1
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
2
|
Dowell JA, Bowsher AW, Jamshad A, Shah R, Burke JM, Donovan LA, Mason CM. Historic breeding practices contribute to germplasm divergence in leaf specialized metabolism and ecophysiology in cultivated sunflower (Helianthus annuus). AMERICAN JOURNAL OF BOTANY 2024; 111:e16420. [PMID: 39483110 DOI: 10.1002/ajb2.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 11/03/2024]
Abstract
PREMISE The use of hybrid breeding systems to increase crop yields has been the cornerstone of modern agriculture and is exemplified in the breeding and improvement of cultivated sunflower (Helianthus annuus). However, it is poorly understood what effect supporting separate breeding pools in such systems, combined with continued selection for yield, may have on leaf ecophysiology and specialized metabolite variation. METHODS We analyzed 288 lines of cultivated H. annuus to examine the genomic basis of several specialized metabolites and agronomically important traits across major heterotic groups. RESULTS Heterotic group identity supports phenotypic divergences between fertility restoring and cytoplasmic male-sterility maintainer lines in leaf ecophysiology and specialized metabolism. However, the divergence is not associated with physical linkage to nuclear genes that support current hybrid breeding practices in cultivated H. annuus. Additionally, we identified four genomic regions associated with leaf ecophysiology and specialized metabolism that colocalize with previously identified QTLs for quantitative self-compatibility traits and with S-protein homolog (SPH) proteins, a recently discovered family of proteins associated with self-incompatibility and self/nonself recognition in Papaver rhoeas (common poppy) with suggested conserved downstream mechanisms among eudicots. CONCLUSIONS Further work is necessary to confirm the self-incompatibility mechanisms in cultivated H. annuus and their relationship to the integrative and polygenic architecture of leaf ecophysiology and specialized metabolism in cultivated sunflower. However, because self-compatibility is a derived quantitative trait in cultivated H. annuus, trait linkage to divergent phenotypic traits may have partially arisen as a potential unintended consequence of historical breeding practices and selection for yield.
Collapse
Affiliation(s)
- Jordan A Dowell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70802, LA, USA
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
| | - Alan W Bowsher
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Amna Jamshad
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Rahul Shah
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- The Plant Center, University of Georgia, Athens, 30602, GA, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- Department of Biology, University of British Columbia Okanagan, Kelowna, B.C. 9 V1V1V7, Canada
| |
Collapse
|
3
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Kang KK, Cho YG. Genetic Analysis Based on CRISPR/Cas9 Technology in Plants. Int J Mol Sci 2023; 24:16398. [PMID: 38003586 PMCID: PMC10671080 DOI: 10.3390/ijms242216398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Genome-editing technology is a type of genetic engineering in which DNA is inserted into, replaced in, or deleted from the genome using artificially engineered nucleases or genetic scissors [...].
Collapse
Affiliation(s)
- Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
5
|
Lee YR, Siddique MI, Kim DS, Lee ES, Han K, Kim SG, Lee HE. CRISPR/Cas9-mediated gene editing to confer turnip mosaic virus (TuMV) resistance in Chinese cabbage ( Brassica rapa). HORTICULTURE RESEARCH 2023; 10:uhad078. [PMID: 37323233 PMCID: PMC10261878 DOI: 10.1093/hr/uhad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023]
Abstract
Genome editing approaches, particularly the CRISPR/Cas9 technology, are becoming state-of-the-art for trait development in numerous breeding programs. Significant advances in improving plant traits are enabled by this influential tool, especially for disease resistance, compared to traditional breeding. One of the potyviruses, the turnip mosaic virus (TuMV), is the most widespread and damaging virus that infects Brassica spp. worldwide. We generated the targeted mutation at the eIF(iso)4E gene in the TuMV-susceptible cultivar "Seoul" using CRISPR/Cas9 to develop TuMV-resistant Chinese cabbage. We detected several heritable indel mutations in the edited T0 plants and developed T1 through generational progression. It was indicated in the sequence analysis of the eIF(iso)4E-edited T1 plants that the mutations were transferred to succeeding generations. These edited T1 plants conferred resistance to TuMV. It was shown with ELISA analysis the lack of accumulation of viral particles. Furthermore, we found a strong negative correlation (r = -0.938) between TuMV resistance and the genome editing frequency of eIF(iso)4E. Consequently, it was revealed in this study that CRISPR/Cas9 technique can expedite the breeding process to improve traits in Chinese cabbage plants.
Collapse
Affiliation(s)
- Ye-Rin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Muhammad Irfan Siddique
- Department of Horticultural Sciences, North Carolina State University Mountain Horticultural Crops Research, Extension Center 455 Research Drive, Mills River, NC 28759, USA
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Eun Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | | |
Collapse
|
6
|
Li C, Long Y, Lu M, Zhou J, Wang S, Xu Y, Tan X. Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2023; 13:1065872. [PMID: 36762174 PMCID: PMC9902722 DOI: 10.3389/fpls.2022.1065872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Self-incompatibility (SI) is an important strategy for plants to maintain abundant variation to enhance their adaptability to the environment. Camellia oleifera is one of the most important woody oil plants and is widely cultivated in China. Late acting self-incompatibility (LSI) in C. oleifera results in a relatively poor fruit yield in the natural state, and understanding of the LSI mechanism remains limited. METHODS To better understand the molecular expression and gene coexpression network in the LSI reaction in C. oleifera, we conducted self- and cross-pollination experiments at two different flower bud developmental stages (3-4 d before flowering and 1 d before flowering), and cytological observation, fruit setting rate (FSR) investigation and RNA-Seq analysis were performed to investigate the mechanism of the male -female interaction and identify hub genes responsible for the LSI in C. oleifera. RESULTS Based on the 21 ovary transcriptomes, a total of 7669 DEGs were identified after filtering out low-expression genes. Weighted gene coexpression network analysis (WGCNA) divided the DEGs into 15 modules. Genes in the blue module (1163 genes) were positively correlated with FSR, and genes in the pink module (339 genes) were negatively correlated with FSR. KEGG analysis indicated that flavonoid biosynthesis, plant MAPK signaling pathways, ubiquitin-mediated proteolysis, and plant-pathogen interaction were the crucial pathways for the LSI reaction. Fifty four transcription factors (TFs) were obtained in the two key modules, and WRKY and MYB were potentially involved in the LSI reaction in C. oleifera. Network establishment indicated that genes encoding G-type lectin S-receptor-like serine (lecRLK), isoflavone 3'-hydroxylase-like (CYP81Q32), cytochrome P450 87A3-like (CYP87A3), and probable calcium-binding protein (CML41) were the hub genes that positively responded to the LSI reaction. The other DEGs inside the two modules, including protein RALF-like 10 (RALF), F-box and pectin acetylesterase (MTERF5), might also play vital roles in the LSI reaction in C. oleifera. DISCUSSION Overall, our study provides a meaningful resource for gene network studies of the LSI reaction process and subsequent analyses of pollen-pistil interactions and TF roles in the LSI reaction, and it also provides new insights for exploring the mechanisms of the LSI response.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Yi Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Sen Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Yan Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
7
|
CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). Int J Mol Sci 2022; 24:ijms24010541. [PMID: 36613993 PMCID: PMC9820718 DOI: 10.3390/ijms24010541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Chinese cabbage has unintended bolting in early spring due to sudden climate change. In this study, late-bolting Chinese cabbage lines were developed via mutagenesis of the BrLEAFY (BrLFY) gene, a transcription factor that determines floral identity, using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system. Double-strand break of the target region via gene editing based on nonhomologous end joining (NHEJ) was applied to acquire useful traits in plants. Based on the 'CT001' pseudomolecule, a single guide RNA (sgRNA) was designed and the gene-editing vector was constructed. Agrobacterium-mediated transformation was used to generate a Chinese cabbage line in which the sequence of the BrLFY paralogs was edited. In particular, single base inserted mutations occurred in the BrLFY paralogs of the LFY-7 and LFY-13 lines, and one copy of T-DNA was inserted into the intergenic region. The selected LFY-edited lines displayed continuous vegetative growth and late bolting compared to the control inbred line, 'CT001'. Further, some LFY-edited lines showing late bolting were advanced to the next generation. The T-DNA-free E1LFY-edited lines bolted later than the inbred line, 'CT001'. Overall, CRISPR/Cas9-mediated mutagenesis of the BrLFY gene was found to delay the bolting time. Accordingly, CRISPR/Cas9 is considered an available method for the molecular breeding of crops.
Collapse
|
8
|
CRISPR/Cas9-Mediated Editing of AGAMOUS-like Genes Results in a Late-Bolting Phenotype in Chinese Cabbage ( Brassica rapa ssp. pekinensis). Int J Mol Sci 2022; 23:ijms232315009. [PMID: 36499334 PMCID: PMC9735848 DOI: 10.3390/ijms232315009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the sudden change in temperature in spring, Chinese cabbage, a leafy vegetable cultivated for consumption, loses its commercial value due to the onset of bolting—the phenomenon of switching from vegetative to reproductive growth. In this study, we applied clustered regularly interspaced short palindromic repeats/(CRISPR)-associated system 9 (CRISPR/Cas9) technology to analyze AGAMOUS-like genes. We performed functional analysis of AGL19 and AGL24 genes related to bolting and flowering using CRISPR/Cas9-mediated Chinese cabbage transformation. Single-guide RNA (sgRNA) sequences were created with a low off-targeting probability to construct gene-editing vectors. Agrobacterium-mediated transformation was conducted, and tentative E0 AGL-edited lines were analyzed using molecular biotechnological methods. Two AGL19-edited lines with nucleotide sequence mutations in the target sequence of the AGL19 genes and four AGL24-edited lines with nucleotide sequence mutations in the target sequence of the AGL24 genes showed particularly late bolting compared to the inbred line ‘CT001.’ Generational progression using bud pollination obtained T-DNA-free E1 AGL-edited lines, which also showed late bolting. The loss of function of the AGL protein was caused by the occurrence of an indel mutation in the AGL19 and AGL24 genes, which results in an early stop codon. Furthermore, frameshift mutations led to structural changes and the introduction of an early stop codon in the AGL19 and AGL24 proteins. Our results indicate that CRISPR/Cas9-mediated editing of AGAMOUS-like genes results in a late-bolting phenotype and that CRISPR/Cas9 is a useful technology for analyzing gene function in Chinese cabbage (Brassica rapa ssp. pekinensis).
Collapse
|