1
|
Haines DD, Cowan FM, Tosaki A. Evolving Strategies for Use of Phytochemicals in Prevention and Long-Term Management of Cardiovascular Diseases (CVD). Int J Mol Sci 2024; 25:6176. [PMID: 38892364 PMCID: PMC11173167 DOI: 10.3390/ijms25116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This report describes major pathomechanisms of disease in which the dysregulation of host inflammatory processes is a major factor, with cardiovascular disease (CVD) as a primary model, and reviews strategies for countermeasures based on synergistic interaction between various agents, including drugs and generally regarded as safe (GRAS) natural medical material (NMM), such as Ginkgo biloba, spice phytochemicals, and fruit seed flavonoids. The 15 well-defined CVD classes are explored with particular emphasis on the extent to which oxidative stressors and associated ischemia-reperfusion tissue injury contribute to major symptoms. The four major categories of pharmaceutical agents used for the prevention of and therapy for CVD: statins, beta blockers (β-blockers), blood thinners (anticoagulants), and aspirin, are presented along with their adverse effects. Analyses of major cellular and molecular features of drug- and NMM-mediated cardioprotective processes are provided in the context of their development for human clinical application. Future directions of the evolving research described here will be particularly focused on the characterization and manipulation of calcium- and calcineurin-mediated cascades of signaling from cell surface receptors on cardiovascular and immune cells to the nucleus, with the emergence of both protective and pathological epigenetic features that may be modulated by synergistically-acting combinations of drugs and phytochemicals in which phytochemicals interact with cells to promote signaling that reduces the effective dosage and thus (often) toxicity of drugs.
Collapse
Affiliation(s)
| | - Fred M. Cowan
- Uppsala Inc., 67 Shady Brook Drive, Colora, MD 21917, USA;
| | - Arpad Tosaki
- Department Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- HUN-REN-UD Pharmamodul Research Group, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Moldvai D, Sztankovics D, Dankó T, Vetlényi E, Petővári G, Márk Á, Patonai A, Végső G, Piros L, Hosszú Á, Pápay J, Krencz I, Sebestyén A. Tumorigenic role of tacrolimus through mTORC1/C2 activation in post-transplant renal cell carcinomas. Br J Cancer 2024; 130:1119-1130. [PMID: 38341510 PMCID: PMC10991560 DOI: 10.1038/s41416-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) face an increased risk of renal cell carcinoma (RCC), in which the immunosuppressive regimen plays an important role. This study aimed to identify intracellular signalling alterations associated with post-transplant (post-tx) tumour formation. METHODS Expression of mTOR-related proteins were analysed in kidneys obtained from end-stage renal disease (ESRD) patients and RCCs developed in KTRs or non-transplant patients. The effects of tacrolimus (TAC) and rapamycin (RAPA) on mTOR activity, proliferation, and tumour growth were investigated through different in vitro and in vivo experiments. RESULTS Elevated mTORC1/C2 activity was observed in post-tx RCCs and in kidneys of TAC-treated ESRD patients. In vitro experiments demonstrated that TAC increases mTOR activity in a normal tubular epithelial cell line and in the investigated RCC cell lines, moreover, promotes the proliferation of some RCC cell line. In vivo, TAC elevated mTORC1/C2 activity in ischaemic kidneys of mice and enhanced tumour growth in xenograft model. CONCLUSIONS We observed significantly increased mTOR activity in ischaemic kidneys and post-tx RCCs, which highlights involvement of mTOR pathway both in the healing or fibrotic processes of kidney and in tumorigenesis. TAC-treatment further augmented the already elevated mTOR activity of injured kidney, potentially contributing to tumorigenesis during immunosuppression.
Collapse
Affiliation(s)
- Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Gyula Végső
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - László Piros
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Ádám Hosszú
- Department of Paediatrics (Bókay street Unit), Semmelweis University, Üllői út. 26, H-1085, Budapest, Hungary
- MTA-SE Lendulet Diabetes Research Group, Bókay János utca 53-54., H-1083, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary.
| |
Collapse
|
3
|
Fragoulis A, Tohidnezhad M, Kubo Y, Wruck CJ, Craveiro RB, Bock A, Wolf M, Pufe T, Jahr H, Suhr F. The Contribution of the Nrf2/ARE System to Mechanotransduction in Musculoskeletal and Periodontal Tissues. Int J Mol Sci 2023; 24:ijms24097722. [PMID: 37175428 PMCID: PMC10177782 DOI: 10.3390/ijms24097722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Frank Suhr
- Division of Molecular Exercise Physiology, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
| |
Collapse
|
4
|
Molecular Mechanisms of Cartilage Repair and Their Possible Clinical Uses: A Review of Recent Developments. Int J Mol Sci 2022; 23:ijms232214272. [PMID: 36430749 PMCID: PMC9697852 DOI: 10.3390/ijms232214272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage (AC) defects are frequent but hard to manage. Osteoarthritis (OA) is a musculoskeletal illness that afflicts between 250 and 500 million people in the world. Even though traditional OA drugs can partly alleviate pain, these drugs cannot entirely cure OA. Since cartilaginous tissue of the joints has a poor self-repair capacity and very poor proliferative ability, the healing of injured cartilaginous tissue of the joint has not been accomplished so far. Consequently, the discovery of efficacious mediations and regenerative treatments for OA is needed. This manuscript reviews the basic concepts and the recent developments on the molecular mechanisms of cartilage repair and their potential clinical applications. For this purpose, a literature exploration was carried out in PubMed for the years 2020, 2021, and 2022. On 31 October 2022 and using "cartilage repair molecular mechanisms" as keywords, 41 articles were found in 2020, 42 in 2021, and 36 in 2022. Of the total of 119 articles, 80 were excluded as they were not directly related to the title of this manuscript. Of particular note are the advances concerning the mechanisms of action of hyaluronic acid, mesenchymal stem cells (MSCs), nanotechnology, enhancer of zeste 2 polycomb repressive complex 2 subunit (EHZ2), hesperetin, high mobility group box 2 (HMGB2), α2-macroglobulin (α2M), proteoglycan 4 (Prg4)/lubricin, and peptides related to cartilage repair and treatment of OA. Despite the progress made, current science has not yet achieved a definitive solution for healing AC lesions or repairing cartilage in the case of OA. Therefore, further research into the molecular mechanisms of AC damage is needed in the coming decades.
Collapse
|