1
|
Meng S, Yan X, Piao Y, Li S, Wang X, Jiang J, Liang Y, Pang W. Multiple transcription factors involved in the response of Chinese cabbage against Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2024; 15:1391173. [PMID: 38903421 PMCID: PMC11187285 DOI: 10.3389/fpls.2024.1391173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024]
Abstract
Clubroot disease, which is caused by the obligate biotrophic protist Plasmodiophora brassicae, leads to the formation of galls, commonly known as pathogen-induced tumors, on the roots of infected plants. The identification of crucial regulators of host tumor formation is essential to unravel the mechanisms underlying the proliferation and differentiation of P. brassicae within plant cells. To gain insight into this process, transcriptomic analysis was conducted to identify key genes associated with both primary and secondary infection of P. brassicae in Chinese cabbage. Our results demonstrate that the k-means clustering of subclass 1, which exhibited specific trends, was closely linked to the infection process of P. brassicae. Of the 1610 differentially expressed genes (DEGs) annotated in subclass 1, 782 were identified as transcription factors belonging to 49 transcription factor families, including bHLH, B3, NAC, MYB_related, WRKY, bZIP, C2H2, and ERF. In the primary infection, several genes, including the predicted Brassica rapa probable pectate lyase, RPM1-interacting protein 4-like, L-type lectin-domain-containing receptor kinase, G-type lectin S-receptor-like serine, B. rapa photosystem II 22 kDa protein, and MLP-like protein, showed significant upregulation. In the secondary infection stage, 45 of 50 overlapping DEGs were upregulated. These upregulated DEGs included the predicted B. rapa endoglucanase, long-chain acyl-CoA synthetase, WRKY transcription factor, NAC domain-containing protein, cell division control protein, auxin-induced protein, and protein variation in compound-triggered root growth response-like and xyloglucan glycosyltransferases. In both the primary and secondary infection stages, the DEGs were predicted to be Brassica rapa putative disease resistance proteins, L-type lectin domain-containing receptor kinases, ferredoxin-NADP reductases, 1-aminocyclopropane-1-carboxylate synthases, histone deacetylases, UDP-glycosyltransferases, putative glycerol-3-phosphate transporters, and chlorophyll a-binding proteins, which are closely associated with plant defense responses, biosynthetic processes, carbohydrate transport, and photosynthesis. This study revealed the pivotal role of transcription factors in the initiation of infection and establishment of intracellular parasitic relationships during the primary infection stage, as well as the proliferation and differentiation of the pathogen within the host cell during the secondary infection stage.
Collapse
Affiliation(s)
- Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xinyu Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yinglan Piao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Davoudnia B, Dadkhodaie A, Moghadam A, Heidari B, Yassaie M. Transcriptome analysis in Aegilops tauschii unravels further insights into genetic control of stripe rust resistance. PLANTA 2024; 259:70. [PMID: 38345645 DOI: 10.1007/s00425-024-04347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024]
Abstract
MAIN CONCLUSION The Aegilops tauschii resistant accession prevented the pathogen colonization by controlling the sugar flow and triggering the hypersensitive reaction. This study suggested that NBS-LRRs probably induce resistance through bHLH by controlling JA- and SA-dependent pathways. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is one of wheat's most destructive fungal diseases that causes a severe yield reduction worldwide. The most effective and economically-friendly strategy to manage this disease is genetic resistance which can be achieved through deploying new and effective resistance genes. Aegilops tauschii, due to its small genome and co-evolution with Pst, can provide detailed information about underlying resistance mechanisms. Hence, we used RNA-sequencing approach to identify the transcriptome variations of two contrasting resistant and susceptible Ae. tauschii accessions in interaction with Pst and differentially expressed genes (DEGs) for resistance to stripe rust. Gene ontology, pathway analysis, and search for functional domains, transcription regulators, resistance genes, and protein-protein interactions were used to interpret the results. The genes encoding NBS-LRR, CC-NBS-kinase, and phenylalanine ammonia-lyase, basic helix-loop-helix (bHLH)-, basic-leucine zipper (bZIP)-, APETALA2 (AP2)-, auxin response factor (ARF)-, GATA-, and LSD-like transcription factors were up-regulated exclusively in the resistant accession. The key genes involved in response to salicylic acid, amino sugar and nucleotide sugar metabolism, and hypersensitive response contributed to plant defense against stripe rust. The activation of jasmonic acid biosynthesis and starch and sucrose metabolism pathways under Pst infection in the susceptible accession explained the colonization of the host. Overall, this study can fill the gaps in the literature on host-pathogen interaction and enrich the Ae. tauschii transcriptome sequence information. It also suggests candidate genes that could guide future breeding programs attempting to develop rust-resistant cultivars.
Collapse
Affiliation(s)
- Behnam Davoudnia
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ali Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Mohsen Yassaie
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
3
|
Garvetto A, Murúa P, Kirchmair M, Salvenmoser W, Hittorf M, Ciaghi S, Harikrishnan SL, Gachon CMM, Burns JA, Neuhauser S. Phagocytosis underpins the biotrophic lifestyle of intracellular parasites in the class Phytomyxea (Rhizaria). THE NEW PHYTOLOGIST 2023; 238:2130-2143. [PMID: 36810975 PMCID: PMC10953367 DOI: 10.1111/nph.18828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Phytomyxea are intracellular biotrophic parasites infecting plants and stramenopiles, including the agriculturally impactful Plasmodiophora brassicae and the brown seaweed pathogen Maullinia ectocarpii. They belong to the clade Rhizaria, where phagotrophy is the main mode of nutrition. Phagocytosis is a complex trait of eukaryotes, well documented for free-living unicellular eukaryotes and specific cellular types of animals. Data on phagocytosis in intracellular, biotrophic parasites are scant. Phagocytosis, where parts of the host cell are consumed at once, is seemingly at odds with intracellular biotrophy. Here we provide evidence that phagotrophy is part of the nutritional strategy of Phytomyxea, using morphological and genetic data (including a novel transcriptome of M. ectocarpii). We document intracellular phagocytosis in P. brassicae and M. ectocarpii by transmission electron microscopy and fluorescent in situ hybridization. Our investigations confirm molecular signatures of phagocytosis in Phytomyxea and hint at a small specialized subset of genes used for intracellular phagocytosis. Microscopic evidence confirms the existence of intracellular phagocytosis, which in Phytomyxea targets primarily host organelles. Phagocytosis seems to coexist with the manipulation of host physiology typical of biotrophic interactions. Our findings resolve long debated questions on the feeding behaviour of Phytomyxea, suggesting an unrecognized role for phagocytosis in biotrophic interactions.
Collapse
Affiliation(s)
- Andrea Garvetto
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Pedro Murúa
- Laboratorio de Macroalgas, Instituto de AcuiculturaUniversidad Austral de ChilePuerto Montt5480000Chile
| | - Martin Kirchmair
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Willibald Salvenmoser
- Institute of ZoologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Michaela Hittorf
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Stefan Ciaghi
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Srilakshmy L. Harikrishnan
- Centre for Plant Systems BiologyVIBZwijnaarde 71Ghent9052Belgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityZwijnaarde 71Ghent9052Belgium
| | - Claire M. M. Gachon
- Muséum National d'Histoire Naturelle, UMR 7245, CNRS CP 2657 rue Cuvier75005ParisFrance
- Scottish Association for Marine ScienceScottish Marine InstituteDunbegObanPA37 1QAUK
| | - John A. Burns
- Bigelow Laboratory for Ocean Sciences60 Bigelow Dr.East BoothbayME04544USA
| | - Sigrid Neuhauser
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| |
Collapse
|
4
|
Xu W, Liu Z, Zhao Z, Zhang S, Li M, Guo D, Liu JH, Li C. The functional analysis of sugar transporter proteins in sugar accumulation and pollen tube growth in pummelo ( Citrus grandis). FRONTIERS IN PLANT SCIENCE 2023; 13:1106219. [PMID: 36684762 PMCID: PMC9846575 DOI: 10.3389/fpls.2022.1106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Sugar transporter proteins (STPs) play vital roles in sugar transport and allocation of carbon sources in plants. However, the evolutionary dynamics of this important gene family and their functions are still largely unknown in citrus, which is the largest fruit crop in the world. In this study, fourteen non-redundant CgSTP family members were identified in pummelo (Citrus grandis). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of CgSTPs. Moreover, CgSTP4, 11, 13, 14 were proofed to be localized in plasma membrane and have glucose transport activity in yeast. The hexose content were significantly increased with the transient overexpression of CgSTP11 and CgSTP14. In addition, antisense repression of CgSTP4 induced the shorter pollen tube length in vitro, implying the potential role of CgSTP4 in pummelo pollen tube growth. Taken together, this work explored a framework for understanding the physiological role of CgSTPs and laid a foundation for future functional studies of these members in citrus species.
Collapse
Affiliation(s)
- Weiwei Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Ziyan Liu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zeqi Zhao
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Shuhang Zhang
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Mengdi Li
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Dayong Guo
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Adhikary D, Kisiala A, Sarkar A, Basu U, Rahman H, Emery N, Kav NNV. Early-stage responses to Plasmodiophora brassicae at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed Brassica napus. Mol Omics 2022; 18:991-1014. [PMID: 36382681 DOI: 10.1039/d2mo00251e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clubroot, a devastating soil-borne root disease, in Brassicaceae is caused by Plasmodiophora brassicae Woronin (P. brassicae W.), an obligate biotrophic protist. Plant growth and development, as well as seed yield of Brassica crops, are severely affected due to this disease. Several reports described the molecular responses of B. napus to P. brassicae; however, information on the early stages of pathogenesis is limited. In this study, we have used transcriptomics and metabolomics to characterize P. brassicae pathogenesis at 1-, 4-, and 7-days post-inoculation (DPI) in clubroot resistant (CR) and susceptible (CS) doubled-haploid (DH) canola lines. When we compared between inoculated and uninoculated groups, a total of 214 and 324 putative genes exhibited differential expression (q-value < 0.05) at one or more time-points in the CR and CS genotypes, respectively. When the inoculated CR and inoculated CS genotypes were compared, 4765 DEGs were differentially expressed (q-value < 0.05) at one or more time-points. Several metabolites related to organic acids (e.g., citrate, pyruvate), amino acids (e.g., proline, aspartate), sugars, and mannitol, were differentially accumulated in roots in response to pathogen infection when the CR and CS genotypes were compared. Several DEGs also corresponded to differentially accumulated metabolites, including pyrroline-5-carboxylate reductase (BnaC04g11450D), citrate synthase (BnaC02g39080D), and pyruvate kinase (BnaC04g23180D) as detected by transcriptome analysis. Our results suggest important roles for these genes in mediating resistance to clubroot disease. To our knowledge, this is the first report of an integrated transcriptome and metabolome analysis aimed at characterizing the molecular basis of resistance to clubroot in canola.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Ananya Sarkar
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|