1
|
Nityagovsky NN, Kiselev KV, Suprun AR, Dubrovina AS. Impact of Exogenous dsRNA on miRNA Composition in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2335. [PMID: 39204771 PMCID: PMC11360658 DOI: 10.3390/plants13162335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The application of double-stranded RNAs (dsRNAs) to plant surfaces has emerged as a promising tool for manipulating gene expression in plants and pathogens, offering new opportunities for crop improvement. While research has shown the capability of exogenous dsRNAs to silence genes, the full spectrum of their impact, particularly on the intricate network of microRNAs (miRNAs), remains largely unexplored. Here, we show that the exogenous application of chalcone synthase (CHS)-encoding dsRNA to the rosette leaves of Arabidopsis thaliana induced extensive alterations in the miRNA profile, while non-specific bacterial neomycin phosphotransferase II (NPTII) dsRNA had a minimal effect. Two days after treatment, we detected 60 differentially expressed miRNAs among the 428 miRNAs found in the A. thaliana genome. A total of 59 miRNAs were significantly changed after AtCHS-dsRNA treatment compared with water and NPTII-dsRNA, and 1 miRNA was significantly changed after AtCHS-dsRNA and NPTII-dsRNA compared with the water control. A comprehensive functional enrichment analysis revealed 17 major GO categories enriched among the genes potentially targeted by the up- and downregulated miRNAs. These categories included processes such as aromatic compound biosynthesis (a pathway directly related to CHS activity), heterocycle biosynthesis, RNA metabolism and biosynthesis, DNA transcription, and plant development. Several predicted targets of upregulated and downregulated miRNAs, including APETALA2, SCL27, SOD1, GRF1, AGO2, PHB, and PHV, were verified by qRT-PCR. The analysis showed a negative correlation between the expression of miRNAs and the expression of their predicted targets. Thus, exogenous plant gene-specific dsRNAs induce substantial changes in the plant miRNA composition, ultimately affecting the expression of a wide range of genes. These findings have profound implications for our understanding of the effects of exogenously induced RNA interference, which can have broader effects beyond targeted mRNA degradation, affecting the expression of other genes through miRNA regulation.
Collapse
Affiliation(s)
| | | | | | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (N.N.N.); (A.R.S.)
| |
Collapse
|
2
|
Wang Y, Guo Y, Guo S, Qi L, Li B, Jiang L, Xu C, An M, Wu Y. RNA interference-based exogenous double-stranded RNAs confer resistance to Rhizoctonia solani AG-3 on Nicotiana tabacum. PEST MANAGEMENT SCIENCE 2024; 80:2170-2178. [PMID: 38284497 DOI: 10.1002/ps.7962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Rhizoctonia solani Kühn is a pathogenic fungus causing tobacco target spot disease, and leads to great losses worldwide. At present, resistant varieties and effective control strategy on tobacco target spot disease are very limited. Host-induced gene silencing (HIGS) as well as the exogenous dsRNA can be used to suppress disease progression, and reveal the function of crucial genes involved in the growth and pathogenesis of the fungus. RESULTS The silencing of endoPGs or RPMK1 in host plants by TRV-based HIGS resulted in a significant reduction in disease development in Nicotiana benthamiana. In vitro analysis validated that red fluorescence signals were consistently observed in the hyphae treated with Cy3-fluorescein-labeled dsRNA at 12, 24, 48 and 72 h postinoculation (hpi). Additionally, application of dsRNA-endoPGs, dsRNA-RPMK1 and dsRNA-PGMK (fusion of partial endoPGs and RPMK1 sequences) effectively inhibited the hyphal growth of R. solani YC-9 in vitro and suppressed disease progression in the leaves, and quantitative real-time PCR confirmed that the application of dsRNAs significantly reduced the expression levels of endoPGs and RPMK1. CONCLUSION These results provide theoretical basis and new direction for RNAi approaches on the prevention and control of disease caused by R. solani. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shiping Guo
- Sichuan Province Tobacco Company, Chengdu, China
| | - Lin Qi
- Sichuan Province Tobacco Company, Chengdu, China
| | - Bin Li
- Sichuan Province Tobacco Company, Chengdu, China
| | - Lianqiang Jiang
- Liangshanzhou Branch of Sichuan Province Tobacco Company, Xichang, China
| | - Chuantao Xu
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Frascati F, Rotunno S, Accotto GP, Noris E, Vaira AM, Miozzi L. Exogenous Application of dsRNA for Protection against Tomato Leaf Curl New Delhi Virus. Viruses 2024; 16:436. [PMID: 38543801 PMCID: PMC10974794 DOI: 10.3390/v16030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging plant pathogen, fast spreading in Asian and Mediterranean regions, and is considered the most harmful geminivirus of cucurbits in the Mediterranean. ToLCNDV infects several plant and crop species from a range of families, including Solanaceae, Cucurbitaceae, Fabaceae, Malvaceae and Euphorbiaceae. Up to now, protection from ToLCNDV infection has been achieved mainly by RNAi-mediated transgenic resistance, and non-transgenic fast-developing approaches are an urgent need. Plant protection by the delivery of dsRNAs homologous to a pathogen target sequence is an RNA interference-based biotechnological approach that avoids cultivating transgenic plants and has been already shown effective against RNA viruses and viroids. However, the efficacy of this approach against DNA viruses, particularly Geminiviridae family, is still under study. Here, the protection induced by exogenous application of a chimeric dsRNA targeting all the coding regions of the ToLCNDV DNA-A was evaluated in zucchini, an important crop strongly affected by this virus. A reduction in the number of infected plants and a delay in symptoms appearance, associated with a tendency of reduction in the viral titer, was observed in the plants treated with the chimeric dsRNA, indicating that the treatment is effective against geminiviruses but requires further optimization. Limits of RNAi-based vaccinations against geminiviruses and possible causes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| |
Collapse
|
4
|
Kiselev KV, Suprun AR, Aleynova OA, Ogneva ZV, Dubrovina AS. Simultaneous Application of Several Exogenous dsRNAs for the Regulation of Anthocyanin Biosynthesis in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:541. [PMID: 38498529 PMCID: PMC10893326 DOI: 10.3390/plants13040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Plant surface treatment with double-stranded RNAs (dsRNAs) has gained recognition as a promising method for inducing gene silencing and combating plant pathogens. However, the regulation of endogenous plant genes by external dsRNAs has not been sufficiently investigated. Also, the effect of the simultaneous application of multiple gene-specific dsRNAs has not been analyzed. The aim of this study was to exogenously target five genes in Arabidopsis thaliana, namely, three transcription factor genes (AtCPC, AtMybL2, AtANAC032), a calmodulin-binding protein gene (AtCBP60g), and an anthocyanidin reductase gene (AtBAN), which are known as negative regulators of anthocyanin accumulation. Exogenous dsRNAs encoding these genes were applied to the leaf surface of A. thaliana either individually or in mixtures. The mRNA levels of the five targets were analyzed using qRT-PCR, and anthocyanin content was evaluated through HPLC-MS. The results demonstrated significant downregulation of all five target genes by the exogenous dsRNAs, resulting in enhanced expression of chalcone synthase (AtCHS) gene and increased anthocyanin content. The simultaneous foliar application of the five dsRNAs proved to be more efficient in activating anthocyanin accumulation compared to the application of individual dsRNAs. These findings hold considerable importance in plant biotechnology and gene function studies.
Collapse
Affiliation(s)
- Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Olga A Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Zlata V Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexandra S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
5
|
Scarpin D, Nerva L, Chitarra W, Moffa L, D'Este F, Vuerich M, Filippi A, Braidot E, Petrussa E. Characterisation and functionalisation of chitosan nanoparticles as carriers for double-stranded RNA (dsRNA) molecules towards sustainable crop protection. Biosci Rep 2023; 43:BSR20230817. [PMID: 37881894 PMCID: PMC10643051 DOI: 10.1042/bsr20230817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The need to minimise the impact of phytosanitary treatments for disease control boosted researchers to implement techniques with less environmental impact. The development of technologies using molecular mechanisms based on the modulation of metabolism by short dsRNA sequences appears promising. The intrinsic fragility of polynucleotides and the high cost of these techniques can be circumvented by nanocarriers that protect the bioactive molecule enabling high efficiency delivery to the leaf surface and extending its half-life. In this work, a specific protocol was developed aiming to assess the best methodological conditions for the synthesis of low-size chitosan nanoparticles (NPs) to be loaded with nucleotides. In particular, NPs have been functionalised with partially purified Green Fluorescent Protein dsRNAs (GFP dsRNA) and their size, surface charge and nucleotide retention capacity were analysed. Final NPs were also stained with FITC and sprayed on Nicotiana benthamiana leaves to assess, by confocal microscopy, both a distribution protocol and the fate of NPs up to 6 days after application. Finally, to confirm the ability of NPs to increase the efficacy of dsRNA interference, specific tests were performed: by means of GFP dsRNA-functionalised NPs, the nucleotide permanence during time was assessed both in vitro on detached wild-type N. benthamiana leaves and in planta; lastly, the inhibition of Botrytis cinerea on single leaves was also evaluated, using a specific fungal sequence (Bc dsRNA) as the NPs' functionalising agent. The encouraging results obtained are promising in the perspective of long-lasting application of innovative treatments based on gene silencing.
Collapse
Affiliation(s)
- Dora Scarpin
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Loredana Moffa
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Francesca D'Este
- Department of Medicine (DAME), University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Marco Vuerich
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Antonio Filippi
- Department of Medicine (DAME), University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Enrico Braidot
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Elisa Petrussa
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
6
|
Samarskaya VO, Spechenkova N, Ilina I, Suprunova TP, Kalinina NO, Love AJ, Taliansky ME. A Non-Canonical Pathway Induced by Externally Applied Virus-Specific dsRNA in Potato Plants. Int J Mol Sci 2023; 24:15769. [PMID: 37958754 PMCID: PMC10650801 DOI: 10.3390/ijms242115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Michael E. Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| |
Collapse
|
7
|
Suprun AR, Kiselev KV, Dubrovina AS. Exogenously Induced Silencing of Four MYB Transcription Repressor Genes and Activation of Anthocyanin Accumulation in Solanum lycopersicum. Int J Mol Sci 2023; 24:ijms24119344. [PMID: 37298295 DOI: 10.3390/ijms24119344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
RNA interference (RNAi) is a natural post-transcriptional regulatory mechanism that can be artificially induced by exogenous application of double-stranded RNAs (dsRNAs) to the plant surfaces. Recent studies show that it is possible to silence plant genes and change plant properties using plant RNA spraying and other approaches for dsRNA delivery. In this study, we investigated the effect of exogenous gene-specific dsRNAs on the silencing of four tomato genes encoding MYB-family transcription repressors of anthocyanin biosynthesis in the leaves of tomato Solanum lycopersicum L. We found that the exogenous application of dsRNAs encoding for the SlMYBATV1, SlMYB32, SlMYB76, and SlTRY genes downregulated mRNA levels of these endogenous repressors of anthocyanin production, upregulated the expression of anthocyanin biosynthesis-related genes, and enhanced anthocyanin content in the leaves of S. lycopersicum. The data demonstrated that exogenous gene-specific dsRNAs can induce post-transcriptional gene silencing in tomato leaves by direct foliar application of dsRNAs. This approach may be used for plant secondary metabolism induction and as a silencing tool for gene function studies without the need to produce genetically modified plants.
Collapse
Affiliation(s)
- Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Alexandra S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
8
|
Simon I, Persky Z, Avital A, Harat H, Schroeder A, Shoseyov O. Foliar Application of dsRNA Targeting Endogenous Potato ( Solanum tuberosum) Isoamylase Genes ISA1, ISA2, and ISA3 Confers Transgenic Phenotype. Int J Mol Sci 2022; 24:ijms24010190. [PMID: 36613634 PMCID: PMC9820567 DOI: 10.3390/ijms24010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Isoamylase (ISA) is a debranching enzyme found in many plants, which hydrolyzes (1-6)-α-D glucosidic linkages in starch, amylopectin, and β-dextrins, and is thought to be responsible for starch granule formation (ISA1 and ISA2) and degradation (ISA3). Lipid-modified PEI (lmPEI) was synthesized as a carrier for long double-stranded RNA (dsRNA, 250-bp), which targets the three isoamylase isoforms. The particles were applied to the plant via the foliar spray and were differentially effective in suppressing the expressions of ISA1 and ISA2 in the potato leaves, and ISA3 in the tubers. Plant growth was not significantly impaired, and starch levels in the tubers were not affected as well. Interestingly, the treated plants had significantly smaller starch granule sizes as well as increased sucrose content, which led to an early sprouting phenotype. We confirm the proposal of previous research that an increased number of small starch granules could be responsible for an accelerated turnover of glucan chains and, thus, the rapid synthesis of sucrose, and we propose a new relationship between ISA3 and the starch granule size. The implications of this study are in achieving a transgenic phenotype for endogenous plant genes using a systemic, novel delivery system, and foliar applications of dsRNA for agriculture.
Collapse
Affiliation(s)
- Ido Simon
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Zohar Persky
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Aviram Avital
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Hila Harat
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Oded Shoseyov
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
- Correspondence:
| |
Collapse
|