1
|
Lin Z, Liu S, Zhang K, Feng T, Luo Y, Liu Y, Sun B, Zhou L. Molecular mechanisms and therapeutic targets of acute exacerbations of chronic obstructive pulmonary disease with Pseudomonas aeruginosa infection. Respir Res 2025; 26:115. [PMID: 40140846 PMCID: PMC11948814 DOI: 10.1186/s12931-025-03185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of global mortality, with acute exacerbations of COPD (AECOPD) significantly increasing the disease's morbidity and mortality. Among the pathogens implicated in AECOPD, Pseudomonas aeruginosa (P. aeruginosa) is increasingly recognized as a major co-infecting bacterium. Despite its clinical importance, the molecular mechanisms and therapeutic targets underlying AECOPD with P. aeruginosa infection remain inadequately understood. METHODS We employed a multi-omics approach, integrating proteomic analyses of bronchoalveolar lavage fluid (BALF) and plasma with transcriptomic analysis of peripheral blood. A discovery cohort of 40 AECOPD with P. aeruginosa infection patients and 20 healthy controls was analyzed, followed by validation in an independent cohort of 20 patients and 10 controls. Differentially expressed proteins (DEPs) and genes (DEGs) were identified and subjected to protein-protein interaction (PPI) network analysis, weighted gene co-expression network analysis (WGCNA), and immune infiltration analysis. Molecular docking simulations were conducted to explore potential therapeutic agents. RESULTS Our integrative analysis identified key biomarkers, which played critical roles in oxidative stress and neutrophil extracellular trap (NET) formation, both of which were pivotal in the pathogenesis of AECOPD with P. aeruginosa infection. The combined analysis of BALF, plasma, and peripheral blood underscored the interplay between local lung changes and systemic immune responses. Functional enrichment analyses highlighted significant pathways related to bacterial defense, inflammation, and immune activation. Validation in an independent cohort confirmed the diagnostic value of three key proteins (AZU1, MPO, and RETN), with high area under the curve (AUC) values in ROC analyses. Molecular docking indicated strong binding affinities of these proteins with Pioglitazone and Rosiglitazone, suggesting potential therapeutic utility. CONCLUSIONS This study provides a comprehensive understanding of the molecular mechanisms underlying AECOPD with P. aeruginosa infection, highlighting the pivotal roles of oxidative stress and NET formation in disease progression. The identified biomarkers offer promising diagnostic and therapeutic targets. Our findings pave the way for novel strategies to improve outcomes for AECOPD patients with P. aeruginosa infection. While the study design limits our ability to establish causality, these results provide important insights that warrant further investigation, particularly through longitudinal studies, to confirm the specific contributions of P. aeruginosa in exacerbations. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Zhiwei Lin
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuang Liu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ke Zhang
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Tianyu Feng
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Yewei Luo
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yu Liu
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, 510000, China
| | - Baoqing Sun
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Luqian Zhou
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
| |
Collapse
|
2
|
LL-37 Triggers Antimicrobial Activity in Human Platelets. Int J Mol Sci 2023; 24:ijms24032816. [PMID: 36769137 PMCID: PMC9917488 DOI: 10.3390/ijms24032816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Platelets play a crucial role in hemostasis and the immune response, mainly by recognizing signals associated with vascular damage. However, it has recently been discovered that the antimicrobial peptide LL-37 activates platelets in functions related to thrombus formation and inflammation. Therefore, this work aims to evaluate the effect of LL-37 on the activation of antimicrobial functions of human platelets. Our results show that platelets treated with LL-37 increase the surface expression of receptors (Toll-like receptors (TLRs) 2 and -4, CD32, CD206, Dectin-1, CD35, LOX-1, CD41, CD62P, and αIIbβ3 integrins) for the recognition of microorganisms, and molecules related to antigen presentation to T lymphocytes (CD80, CD86, and HLA-ABC) secrete the antimicrobial molecules: bactericidal/permeability-increasing protein (BPI), azurocidin, human neutrophil peptide (HNP) -1, and myeloperoxidase. They also translate azurocidin, and have enhanced binding to Escherichia coli, Staphylococcus aureus, and Candida albicans. Furthermore, the supernatant of LL-37-treated platelets can inhibit E. coli growth, or platelets can employ their LL-37 to inhibit microbial growth. In conclusion, these findings demonstrate that LL-37 participates in the antimicrobial function of human platelets.
Collapse
|