1
|
Rodrigues ÉF, Verza FA, Nishimura FG, Beleboni RO, Hermans C, Janssens K, De Mol ML, Hulpiau P, Marins M. Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome. Mar Drugs 2024; 23:8. [PMID: 39852510 PMCID: PMC11766507 DOI: 10.3390/md23010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs. Lectins from Rhodophytes (red seaweed) have been extensively reported and characterized for their unique molecular structures, carbohydrate-binding specificities, and important biological activities. The increasing number of sequenced Rhodophyte genomes offers the opportunity to further study this rich source of lectins, potentially uncovering new ones with properties significantly different from their terrestrial plant counterparts, thus opening new biotechnological applications. We compiled literature data and conducted an in-depth analysis of the phycolectomes from all Rhodophyta genomes available in NCBI datasets. Using Hidden Markov Models capable of identifying lectin-type domains, we found at least six different types of lectin domains present in Rhodophytes, demonstrating their potential in identifying new lectins. This review integrates a computational analysis of the Rhodophyte phycolectome with existing information on red algae lectins and their biotechnological potential.
Collapse
Affiliation(s)
- Éllen F. Rodrigues
- Postgraduate Program in Environmental Technology, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil;
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Flavia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Felipe Garcia Nishimura
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Renê Oliveira Beleboni
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Kaat Janssens
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Maarten Lieven De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
- Algastech Aquiculture, Research and Development, Ubatuba 11695-722, SP, Brazil
| |
Collapse
|
2
|
Shah N, Kasture AS, Fischer FP, Sitte HH, Hummel T, Sucic S. A transporter's doom or destiny: SLC6A1 in health and disease, novel molecular targets and emerging therapeutic prospects. Front Mol Neurosci 2024; 17:1466694. [PMID: 39268250 PMCID: PMC11390516 DOI: 10.3389/fnmol.2024.1466694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, SLC6A1), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human SLC6A1 gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients. The molecular mechanisms of SLC6A1-associated disorders are discerned to some degree; many SLC6A1 mutations are now known to impair protein folding, and consequently fail to reach the plasma membrane. Inherently, once inside the endoplasmic reticulum (ER), GAT1 abides by a complex cascade of events that enable efficient intracellular trafficking. This involves association with specialized molecular chaperones responsible for steering the protein folding process, oligomerization, sorting through the Golgi apparatus, and ultimately delivery to the cell surface. The entire process is subject to stringent quality control mechanisms at multiple checkpoints. While the majority of the existing loss-of-function SLC6A1 variants interfere with folding and membrane targeting, certain mutants retain abundant surface expression. In either scenario, suppressed GAT1 activity disrupts GABAergic neurotransmission, preceding the disease manifestation in individuals harboring these mutations. The nervous system is enthralling and calls for systematic, groundbreaking research efforts to dissect the precise molecular factors associated with the onset of complex neurological disorders, and uncover additional non-canonical therapeutic targets. Recent research has given hope for some of the misfolded SLC6A1 variants, which can be salvaged by small molecules, i.e., chemical and pharmacological chaperones, acting on multiple upstream targets in the secretory pathway. We here highlight the significance of pharmacochaperoning as a therapeutic strategy for the treatment of SLC6A1-related disorders.
Collapse
Affiliation(s)
- Nikita Shah
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science-AddRess, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Yang J, Zhao Y, Wang X, Yang J, Tang K, Liu J. N-linked glycoproteome analysis reveals central glycosylated proteins involved in response to wheat yellow mosaic virus in wheat. Int J Biol Macromol 2023; 253:126818. [PMID: 37690635 DOI: 10.1016/j.ijbiomac.2023.126818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Glycosylation is an important proteins post-translational modification and is involved in protein folding, stability and enzymatic activity, which plays a crucial role in regulating protein function in plants. Here, we report for the first time on the changes of N-glycoproteome in wheat response to wheat yellow mosaic virus (WYMV) infection. Quantitative analyses of N-linked glycoproteome were performed in wheat without and with WYMV infection by ZIC-HILIC enrichment method combined with LC-MS/MS. Altogether 1160 N-glycopeptides and 971 N-glycosylated sites corresponding to 734 N-glycoproteins were identified, of which 64 N-glycopeptides and 64 N-glycosylated sites in 60 N-glycoproteins were significantly differentially expressed. Two conserved typical N-glycosylation motifs N-X-T and N-X-S and a nontypical motifs N-X-C were enriched in wheat. Gene Ontology analysis showed that most differentially expressed proteins were mainly enriched in metabolic process, catalytic activity and response to stress. Kyoto Encyclopedia of Genes and Genomes analysis indicated that two significantly changed glycoproteins were specifically related to plant-pathogen interaction. Furthermore, we found that over-expression of TaCERK reduced WYMV accumulation. Glycosylation site mutation further suggested that N-glycosylation of TaCERK could regulate wheat resistance to WYMV. This study provides a new insight for the regulation of protein N-glycosylation in defense response of plant.
Collapse
Affiliation(s)
- Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China
| | - Yingjie Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xia Wang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China.
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
5
|
Cui Z, Xue C, Mei Q, Xuan Y. Malectin Domain Protein Kinase (MDPK) Promotes Rice Resistance to Sheath Blight via IDD12, IDD13, and IDD14. Int J Mol Sci 2022; 23:ijms23158214. [PMID: 35897795 PMCID: PMC9331740 DOI: 10.3390/ijms23158214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Sheath blight (ShB) caused by Rhizoctonia solani is a major disease of rice, seriously affecting yield; however, the molecular defense mechanism against ShB remains unclear. A previous transcriptome analysis of rice identified that R. solani inoculation significantly induced MDPK. Genetic studies using MDPK RNAi and overexpressing plants identified that MDPK positively regulates ShB resistance. This MDPK protein was found localized in the endoplasmic reticulum (ER) and Golgi apparatus. Yeast one-hybrid assay, electrophoresis mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) showed that the intermediate domain proteins IDD12, IDD13, and IDD14 bind to the MDPK promoter. Moreover, IDD14 was found to interact with IDD12 and IDD13 to form a transcription complex to activate MDPK expression. The three IDDs demonstrated an additive effect on MDPK activation. Further genetic studies showed that the IDD13 and IDD14 single mutants were more susceptible to ShB but not IDD12, while IDD12, IDD13, and IDD14 overexpressing plants were less susceptible than the wild-type plants. The IDD12, IDD13, and IDD14 mutants also proved the additive effect of the three IDDs on MDPK expression, which regulates ShB resistance in rice. Notably, MDPK overexpression maintained normal yield levels in rice. Thus, our study proves that IDD12, IDD13, and IDD14 activate MDPK to enhance ShB resistance in rice. These results improve our knowledge of rice defense mechanisms and provide a valuable marker for resistance breeding.
Collapse
Affiliation(s)
- Zhibo Cui
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Caiyun Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
- Correspondence: (Q.M.); (Y.X.); Tel.: +86-24-88342065 (Q.M. &Y.X.)
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
- Correspondence: (Q.M.); (Y.X.); Tel.: +86-24-88342065 (Q.M. &Y.X.)
| |
Collapse
|