1
|
Blau R, Russman SM, Qie Y, Shipley W, Lim A, Chen AX, Nyayachavadi A, Ah L, Abdal A, Esparza GL, Edmunds SJ, Vatsyayan R, Dunfield SP, Halder M, Jokerst JV, Fenning DP, Tao AR, Dayeh SA, Lipomi DJ. Surface-Grafted Biocompatible Polymer Conductors for Stable and Compliant Electrodes for Brain Interfaces. Adv Healthc Mater 2024; 13:e2402215. [PMID: 39011811 PMCID: PMC11582513 DOI: 10.1002/adhm.202402215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Durable and conductive interfaces that enable chronic and high-resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long-term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)-b-poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface-initiated atom-transfer radical polymerization (SI-ATRP) is described. This "block-brush" provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge-discharge voltage sweeps on a multiarray neural electrode. In addition, the block-brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application.
Collapse
Affiliation(s)
- Rachel Blau
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Samantha M Russman
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Yi Qie
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Wade Shipley
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0418, USA
| | - Allison Lim
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Alexander X Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Audithya Nyayachavadi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Louis Ah
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Abdulhameed Abdal
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Guillermo L Esparza
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Samuel J Edmunds
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Ritwik Vatsyayan
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Sean P Dunfield
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Moumita Halder
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - David P Fenning
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Andrea R Tao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0418, USA
| | - Shadi A Dayeh
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Darren J Lipomi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| |
Collapse
|
2
|
Wolski K, Smenda J, Świerz W, Dąbczyński P, Marzec M, Zapotoczny S. Self-Templating Copolymerization to Produce Robust Conductive Nanocoatings Based on Conjugated Polymer Brushes with Implementable Memristive Characteristics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309216. [PMID: 38334248 DOI: 10.1002/smll.202309216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Indexed: 02/10/2024]
Abstract
An effective synthesis of conductive polymer brushes, i.e., self-templating surface-initiated copolymerization (ST-SICP), is developed. It proceeds through copolymerization of pendant thiophene groups in the precursor multimonomer poly(3-methylthienyl methacrylate) (PMTM) brushes with free 3-methylthiophene (3MT) monomers leading to PMTM-co-P3MT brushes. This approach leads to improved conformational freedom of generated conjugated poly(thiophene)-based chains and their higher share in the brushes with respect to conjugation of pendant thiophene groups only. As a result, best performing conjugated PMTM-co-P3MT brushes demonstrate high ohmic conductivity in both out-of-plane and in-plane direction. Furthermore, thanks to the covalent anchoring as well as intra- and intermolecular connections, highly stable and mechanically robust nanocoatings are produced which can survive mechanical cleaning and long-term storage under ambient conditions. Grafting of ionic poly(sodium 4-styrenesulfonate) (PSSNa) in between PMTM-co-P3MT chains brings new properties to such binary mixed brushes that can operate as thin-film memristive coating with switchable conductance. It is worth mentioning that the crucial synthetic steps, i.e., grafting of precursor PMTM brushes by surface-initiated organocatalyzed atom transfer radical polymerization (SI-O-ATRP) and PSSNa chains by surface-initiated photoiniferter-mediated polymerization (SI-PIMP) are conducted under ambient conditions using only microliter volumes of reagents providing methodology that can be considered for use beyond the laboratory scale.
Collapse
Affiliation(s)
- Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Joanna Smenda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, Krakow, 30-348, Poland
| | - Wojciech Świerz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Paweł Dąbczyński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow, 30-348, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, Krakow, 30-059, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| |
Collapse
|
3
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
4
|
Pasini D, Zapotoczny S. Synthesis, Processing and Applications of Conjugated Oligomers and Polymers 2.0. Int J Mol Sci 2023; 24:11623. [PMID: 37511381 PMCID: PMC10380569 DOI: 10.3390/ijms241411623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In the past few decades, conjugated organic oligomers and polymers have been shown to have amazing properties, such as conductivity, which were traditionally considered counterintuitive for macromolecules consistently used as plastics and fibers (and thus, insulators) until the late 1970s [...].
Collapse
Affiliation(s)
- Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Söyüt H, Kolcu F, Kaya İ, Yaşar AÖ. Influence of the enzymatic and the chemical oxidative polymerization of trifluoromethyl‐substituted aromatic diamine on thermal and photophysical properties. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hakan Söyüt
- Bursa Uludağ University Faculty of Education, Department of Basic Education Bursa Turkey
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| | - Feyza Kolcu
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
- Lapseki Vocational School, Department of Chemistry and Chemical Processing Technologies Çanakkale Onsekiz Mart University Çanakkale Turkey
| | - İsmet Kaya
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| | - Alper Ömer Yaşar
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| |
Collapse
|
6
|
Grobelny A, Lorenc K, Skowron Ł, Zapotoczny S. Synthetic Route to Conjugated Donor–Acceptor Polymer Brushes via Alternating Copolymerization of Bifunctional Monomers. Polymers (Basel) 2022; 14:polym14132735. [PMID: 35808780 PMCID: PMC9268968 DOI: 10.3390/polym14132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
Alternating donor–acceptor conjugated polymers, widely investigated due to their applications in organic photovoltaics, are obtained mainly by cross-coupling reactions. Such a synthetic route exhibits limited efficiency and requires using, for example, toxic palladium catalysts. Furthermore, the coating process demands solubility of the macromolecules, provided by the introduction of alkyl side chains, which have an impact on the properties of the final material. Here, we present the synthetic route to ladder-like donor–acceptor polymer brushes using alternating copolymerization of modified styrene and maleic anhydride monomers, ensuring proper arrangement of the pendant donor and acceptor groups along the polymer chains grafted from a surface. As a proof of concept, macromolecules with pendant thiophene and benzothiadiazole groups were grafted by means of RAFT and metal-free ATRP polymerizations. Densely packed brushes with a thickness up to 200 nm were obtained in a single polymerization process, without the necessity of using metal-based catalysts or bulky substituents of the monomers. Oxidative polymerization using FeCl3 was then applied to form the conjugated chains in a double-stranded (ladder-like) architecture.
Collapse
|