1
|
Manavi MA, Nourhashemi M, Emami S, Fathian Nasab MH, Dehnavi F, Küçükkılınç TT, Foroumadi A, Sharifzadeh M, Khoobi M. Lipoic acid scaffold applications in the design of multitarget-directed ligands against Alzheimer's disease. Bioorg Chem 2025; 157:108241. [PMID: 39922042 DOI: 10.1016/j.bioorg.2025.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is becoming a fast-growing public health problem which can result in psychological problems as well as loss of speech, language, short-term memory, and motor coordination. Many medications were developed and produced to treat AD, however due to the complexity of the pathology involved in the illness, many of these medications often failed in clinical or preclinical studies. The main issue with the current anti-AD medications is their low efficacy since they use a single target. Multi-target-directed ligands (MTDLs) based on "one molecule; multiple targets" have been introduced to address these two fundamental issues. MTDLs have demonstrated improved efficacy and safety since they regulate many biological targets simultaneously. Alpha-lipoic acid (LA), a natural molecule with distinct properties, is a viable scaffold for developing new MTDLs in treating many neurodegenerative diseases, particularly AD. It is a key mitochondrial enzymes' cofactor and an organic molecule with disulfide functionality. It also has potent antioxidant characteristics that enhance mitochondrial activity. Considering the neuroprotective and anti-inflammatory effects of LA, various hybrids of LA with tacrine, rivastigmine, coumarin and chromone, ibuprofen, melatonin, niacin have been synthesized and biologically evaluated as the MTDLs. In this article, we review the design of LA-based hybrids or conjugates, their biological activities, and structure-activity relationship studies, to develop new MTDLs in the field of AD pharmacotherapy.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Nourhashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hosein Fathian Nasab
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Dehnavi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Woźnicka E, Zapała L, Miłoś A, Ciszkowicz E, Lecka-Szlachta K, Woźnicki P, Przygórzewska A, Kosińska-Pezda M, Byczyński Ł. Synthesis, spectroscopic characterization and biological activities of complexes of light lanthanide ions with 3-hydroxyflavone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124870. [PMID: 39067436 DOI: 10.1016/j.saa.2024.124870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
New solid compounds of light lanthanide ions with 3-hydroxyflavone were synthesized in good yields (up to 85 %). The resulting complexes have been thoroughly characterized using various analytical and spectral techniques, including elemental analysis, complexometry, thermogravimetry, UV-VIS, FT-IR, 1H NMR, 109AgNPET LDI MS and fluorescence spectroscopy. The molecular formulas of the complexes were determined as follows: Ln(3HF)3, where 3HF-3-hydroxyflavone, Ln = La(III), Pr(III), Nd(III) and Ln(3HF)3·nH2O, where n = 1 for Ln = Ce(III), Sm(III), Eu(III), and n = 2 for Gd(III). Thermogravimetric studies revealed that the water molecules in the hydrated compounds are located in the outer coordination sphere. Based on the spectral data, it was noted that lanthanide ions interacted with the 3OH and 4CO groups of 3-hydroxyflavone. The effect of lanthanide ion chelation on the excited-state intramolecular proton transfer (ESIPT) process and fluorescence emission of 3HF was investigated. It was found that coordination with metal ions can suppress the ESIPT process and enhance the fluorescence emission of 3HF. The synthesized compounds were also screened for their antibacterial activity, free radical scavenging capacity, and interaction with BSA. The results showed that the complexes exhibit higher biological activity compared to the ligand.
Collapse
Affiliation(s)
- Elżbieta Woźnicka
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy Av., 6, 35-959 Rzeszów, Poland.
| | - Lidia Zapała
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy Av., 6, 35-959 Rzeszów, Poland
| | - Anna Miłoś
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Ewa Ciszkowicz
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy Av., 6, 35-959 Rzeszów, Poland
| | - Katarzyna Lecka-Szlachta
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy Av., 6, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Małgorzata Kosińska-Pezda
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy Av., 6, 35-959 Rzeszów, Poland
| | - Łukasz Byczyński
- Department of Polymer Technology, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Sartiva H, Nishiwaki H, Akiyama K, Yamauchi S. Discovery of anti-phytopathogenic fungal activity of a new type of ( S)-coumarin bearing a phenylpropanoid unit at the 3-position. JOURNAL OF PESTICIDE SCIENCE 2024; 49:262-270. [PMID: 39877882 PMCID: PMC11770133 DOI: 10.1584/jpestics.d24-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/07/2024] [Indexed: 01/31/2025]
Abstract
The enantiospecific anti-phytopathogenic fungal activity of a new type of coumarin bearing a phenylpropanoid unit at the 3-position was found. (S)-3-[1-Methoxy-3-(4-methoxyphenyl)prop-2-yl]coumarin ((S)-5: EC50=16.5 µM) was 30 times more effective than the (R)-form against the Alternaria alternata Japanese pear pathotype. Derivatives bearing different substituents on the 7'-aromatic ring and the coumarin ring were synthesized to discover the more potent compounds. The 3'-CF3 and 4'-CF3 derivatives, 39 and 40, respectively, had the lowest EC50 values (1-2 µM) in this project, suggesting that the size of the electron-withdrawing and hydrophobic substituents at these positions gave an advantage. On the coumarin ring, the presence of the OCH3 or CH3 group at the 5-position accelerated the activity, as the (4'-OCH3, 5-OCH3) derivative 41 and (4'-OCH3, 5-CH3) derivative 45 were, respectively, 4-5 times more potent than the 4'-OCH3 derivative (S)-5.
Collapse
Affiliation(s)
| | | | - Koichi Akiyama
- Integrated Center for Sciences, Tarumi Station, Ehime University
| | | |
Collapse
|
4
|
Zala AR, Kumar D, Razakhan U, Rajani DP, Ahmad I, Patel H, Kumari P. Molecular modeling and biological investigation of novel s-triazine linked benzothiazole and coumarin hybrids as antimicrobial and antimycobacterial agents. J Biomol Struct Dyn 2024; 42:3814-3825. [PMID: 37218082 DOI: 10.1080/07391102.2023.2216293] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
A novel series of s-triazine linked benzothiazole and coumarin hybrids (6a-6d, 7a-7d, and 8a-8d) were synthesized and characterized by IR, NMR, and mass spectrometry. The compound's in vitro antibacterial and antimycobacterial activities were also evaluated. Remarkable antibacterial activity with MIC in the range of 12.5-62.5 μM and antifungal activity of 100-200 μM were demonstrated by in vitro antimicrobial analysis. Compounds 6b, 6d, 7b, 7d, and 8a strongly inhibited all bacterial strains, while 6b, 6c, and 7d had good to moderate efficacy against M. tuberculosis H37Rv. Synthesized hybrids are observed in the active pocket of the S. aureus dihydropteroate synthetase enzyme, according to a molecular docking investigations. Among the docked compounds, 6d had a strong interaction and a greater binding affinity, and the dynamic stability of protein-ligand complexes was examined using molecular dynamic simulation with various settings at 100 ns. The proposed compounds successfully maintained their molecular interaction and structural integrity inside the S. aureus dihydropteroate synthase, according to the MD simulation analysis. These in silico analyses supported the in vitro antibacterial results of compound 6d, which demonstrated outstanding in vitro antibacterial efficacy against all bacterial strains. In the quest for new antibacterial drug-like molecules, compounds 6d, 7b, and 8a have been identified as promising lead compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajayrajsinh R Zala
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Dinesh Kumar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Uvais Razakhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
5
|
Korbekandi MM, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Notash B. Efficient synthesis of novel thiadiazolo[2,3-b]quinazolin-6-ones catalyzed by diphenhydramine hydrochloride-CoCl⋅6H 2O deep eutectic solvent. Sci Rep 2024; 14:1451. [PMID: 38228770 PMCID: PMC10791603 DOI: 10.1038/s41598-024-52017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
In this research, a new Lewis acid-based deep eutectic solvent (LA-DES) was synthesized using diphenhydramine hydrochloride and CoCl2·6H2O, (2[HDPH]:CoCl42-), and identified by FT-IR and 1HNMR techniques. The physicochemical properties of this LA-DES, such as thermal behavior, thermal stability, and solubility in common solvents were also investigated. The catalytic ability of 2[HDPH]:CoCl42- was ascertained in the efficient synthesis of a novel array of thiadiazolo[2,3-b]quinazolin-6-one scaffolds via a one-pot three-component reaction of dimedone/1,3-cyclohexanedione, aldehydes, and 5-aryl-1,3,4-thiadiazol-2-amines/3-(5-amino-1,3,4-thiadiazol-2-yl)-2H-chromen-2-one under solvent-free conditions. This catalyst was also successfully utilized for the synthesis of mono- and bis-thiadiazolo[2,3-b]quinazolin-6-ones from dialdehydes or bis-1,3,4-thiadiazol-2-amine. The simplicity of enforcement, short reaction time, avoidance of toxic organic solvents, scalability of the synthesis procedure, excellent atom economy, high reaction mass efficiency, and low E-factor are other outstanding advantages of this newly developed method. Furthermore, due to the convenient recovery and reuse of LA-DES, this protocol is economically justified and environmentally friendly.
Collapse
Affiliation(s)
- Mehri Moeini Korbekandi
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Majid Moghadam
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Asen ND, Udenigwe CC, Aluko RE. Quantitative Structure-Activity Relationship Modeling of Pea Protein-Derived Acetylcholinesterase and Butyrylcholinesterase Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16323-16330. [PMID: 37856319 DOI: 10.1021/acs.jafc.3c04880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The aim of this work was to determine the structural requirements for peptides that inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. The data set used consisted of 19 oligopeptides that had been identified through mass spectrometry analysis of enzymatic digests of yellow field pea protein. The structure-function relationship was analyzed by partial least squares regression using the 5z scores. A nine-component model was created from 16 peptides for AChE inhibitory peptides (Q2 = 67.2% and R2 = 0.9974), while three data sets were prepared for BuChE inhibitory peptides to improve the quality of the models (Q2 = 26.7-46.4% and R2 = 0.9577-0.9958). The most active peptides from the PLS models have threonine, leucine, alanine, and valine at the N terminal, asparagine, histidine, proline, and arginine at the second position, with aspartic acid and serine at the third, and arginine at the C terminal.
Collapse
Affiliation(s)
- Nancy D Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Chibuike C Udenigwe
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
7
|
Diverse Biological Activities of 1,3,4-Thiadiazole Scaffold. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chemistry of 1,3,4-thiadiazole is one of the most interesting scaffolds for synthesizing new drug molecules due to their numerous pharmacological activities. Several modifications in the thiadiazole ring have been made, proving it to be more potent and highly effective with a less toxic scaffold for various biological activities. There are several marketed drugs containing 1,3,4-thiadiazole ring in their structure. In this review article, we have tried to compile the newly synthesized 1,3,4-thiadiazole derivatives possessing important pharmaceutical significance since 2014.
Collapse
|
8
|
Tang L, Li P, Han Y, Yang G, Xin H, Zhao S, Guan R, Liu Z, Cao D. A fluorescein-based fluorescent probe for real-time monitoring hypochlorite. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|