1
|
Sandhu ZA, Imtiaz K, Raza MA, Ashraf A, Tubassum A, Khan S, Farwa U, Bhalli AH, Al-Sehemi AG. Beyond graphene: exploring the potential of MXene anodes for enhanced lithium-sulfur battery performance. RSC Adv 2024; 14:20032-20047. [PMID: 38911835 PMCID: PMC11191053 DOI: 10.1039/d4ra02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Areej Tubassum
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sajawal Khan
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Ali Haider Bhalli
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia
| |
Collapse
|
2
|
Prabhakar Vattikuti SV, Shim J, Rosaiah P, Mauger A, Julien CM. Recent Advances and Strategies in MXene-Based Electrodes for Supercapacitors: Applications, Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:62. [PMID: 38202517 PMCID: PMC10780966 DOI: 10.3390/nano14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
With the growing demand for technologies to sustain high energy consumption, supercapacitors are gaining prominence as efficient energy storage solutions beyond conventional batteries. MXene-based electrodes have gained recognition as a promising material for supercapacitor applications because of their superior electrical conductivity, extensive surface area, and chemical stability. This review provides a comprehensive analysis of the recent progress and strategies in the development of MXene-based electrodes for supercapacitors. It covers various synthesis methods, characterization techniques, and performance parameters of these electrodes. The review also highlights the current challenges and limitations, including scalability and stability issues, and suggests potential solutions. The future outlooks and directions for further research in this field are also discussed, including the creation of new synthesis methods and the exploration of novel applications. The aim of the review is to offer a current and up-to-date understanding of the state-of-the-art in MXene-based electrodes for supercapacitors and to stimulate further research in the field.
Collapse
Affiliation(s)
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.V.P.V.); (J.S.)
| | - Pitcheri Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India;
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| |
Collapse
|
3
|
Geng X, Yang L, Song P. Application of MXene-Based Materials for Cathode in Lithium-Sulfur Batteries. Chemistry 2023:e202303451. [PMID: 38050760 DOI: 10.1002/chem.202303451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The lithium-sulfur (Li-S) batteries have a high theoretical specific capacity of 1675 mAh ⋅ g-1 and have become the most promising high-energy storage system for the next generation batteries technology. However, their applications are hindered by insulated feature and volume expansion of sulfur, as well as the "shuttle effect" of polysulfides. MXenes own metallic conductivity and strong ability of polysulfides adsorption. Besides, their unique two-dimensional (2D) structure, large specific surface area, abundant functional groups, and adjustability are beneficial to overcome the drawbacks of the sulfur cathode. In this review, different mainstream preparation methods and excellent properties of MXenes are summarized. Significant achievements and recent progress of MXene-based cathodes and interlayers applied to Li-S cathodes are concluded later. Finally, the challenges, possible solutions and potential applications of MXenes for Li-S batteries are also presented.
Collapse
Affiliation(s)
- Xianwei Geng
- State Key Laboratory of Low-Carbon Smart Coal-Fired, Power Generation and Ultra-Clean Emission, China Energy and Technology Research Institute Co., Ltd, Nanjing, 210023, China
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Li Yang
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| |
Collapse
|
4
|
Julien CM. Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries. Int J Mol Sci 2023; 24:ijms24033026. [PMID: 36769348 PMCID: PMC9918182 DOI: 10.3390/ijms24033026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
The intention behind this Special Issue was to assemble high-quality works focusing on the latest advances in the development of various materials for rechargeable batteries, as well as to highlight the science and technology of devices that today are one of the most important and efficient types of energy storage, namely, lithium-ion, lithium-sulfur, lithium-air and sodium-ion batteries [...].
Collapse
Affiliation(s)
- Christian M Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Geng X, Liu C, Sun Y, Zhao C, Jiang Z, Lim EG, Wang Y, Mitrovic I, Yang L, Song P. Sulfydryl-modified MXene as a sulfur host for highly stable Li-S batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Yin T, Cheng Y, Hou Y, Sun L, Ma Y, Su J, Zhang Z, Liu N, Li L, Gao Y. 3D Porous Structure in MXene/PANI Foam for a High-Performance Flexible Pressure Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204806. [PMID: 36266945 DOI: 10.1002/smll.202204806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The fields of electronic skin, man-machine interaction, and health monitoring require flexible pressure sensors with great sensitivity. However, most microstructure designs utilized to fabricate high-performance pressure sensors require complex preparation processes. Here, MXene/polyaniline (PANI) foam with 3D porous structure is achieved by using a steam-induced foaming method. Based on the structure, a flexible piezoresistive sensor is fabricated. It exhibits high sensitivity (690.91 kPa-1 ), rapid response, and recovery times (106/95 ms) and outstanding fatigue resistance properties (10 000 cycles). The MXene/PANI foam-based pressure sensor can swiftly detect minor pressure and be further used for human activity and health monitoring.
Collapse
Affiliation(s)
- Tingting Yin
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yongfa Cheng
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yixin Hou
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Li Sun
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yanan Ma
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles & School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Jun Su
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zhi Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Nishuang Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Luying Li
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles & School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| |
Collapse
|
7
|
Dual (pH- and ROS-) Responsive Antibacterial MXene-Based Nanocarrier for Drug Delivery. Int J Mol Sci 2022; 23:ijms232314925. [PMID: 36499252 PMCID: PMC9739462 DOI: 10.3390/ijms232314925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a novel MXene (Ti3C2Tx)-based nanocarrier was developed for drug delivery. MXene nanosheets were functionalized with 3, 3'-diselanediyldipropionic acid (DSeDPA), followed by grafting doxorubicin (DOX) as a model drug to the surface of functionalized MXene nanosheets (MXene-Se-DOX). The nanosheets were characterized using scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, energy-dispersive X-ray spectroscopy (EDX), nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and zeta potential techniques. The drug-loading capacity (17.95%) and encapsulation efficiency (41.66%) were determined using ultraviolet-visible spectroscopy. The lateral size and thickness of the MXene nanosheets measured using AFM were 200 nm and 1.5 nm, respectively. The drug release behavior of the MXene-Se-DOX nanosheets was evaluated under different medium conditions, and the nanosheets demonstrated outstanding dual (reactive oxygen species (ROS)- and pH-) responsive properties. Furthermore, the MXene-Se-DOX nanosheets exhibited excellent antibacterial activity against both Gram-negative E. coli and Gram-positive B. subtilis.
Collapse
|