1
|
Lisboa MDO, Selenko AH, Hochuli AHD, Senegaglia AC, Fracaro L, Brofman PRS. The influence of fetal bovine serum concentration on stemness and neuronal differentiation markers in stem cells from human exfoliated deciduous teeth. Tissue Cell 2024; 91:102571. [PMID: 39353229 DOI: 10.1016/j.tice.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Dental Stem Cells (DSCs) from discarded teeth are a non-invasive and ethically favorable source with the potential for neurogenesis due to their ectodermal origin. Stem cells from human exfoliated deciduous teeth (SHED) are particularly promising due to their high differentiation potential and relative immaturity compared to other Mesenchymal Stromal Cells (MSCs). Markers like CD56 and CD271 are critical in identifying MSC subpopulations for therapeutic applications because of their roles in neurodevelopment and maintaining stemness. This study investigates how fetal bovine serum (FBS) concentrations affect the expression of CD56 and CD271 in SHED, influencing their stemness and neuronal differentiation potential. SHEDs were isolated from various donors, cultured, and characterized for MSC traits using markers such as CD14, CD19, CD29, CD34, CD45, CD73, CD90, CD105, CD56, and CD271. Culturing SHED in different FBS conditions (standard 15 %, reduced 1 % and 5 %, and FBS-free) showed that lower FBS concentrations increase CD271 and CD56 expression while maintaining the standard MSC immunophenotype. Importantly, the enhanced expression of these markers can be induced even after SHEDs have been expanded in standard FBS concentrations. These findings suggest that FBS concentration can optimize SHED culture conditions, enhancing their suitability for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Ana Helena Selenko
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Agner Henrique Dorigo Hochuli
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| |
Collapse
|
2
|
Kang M, Yang Y, Zhang H, Zhang Y, Wu Y, Denslin V, Othman RB, Yang Z, Han J. Comparative Analysis of Serum and Serum-Free Medium Cultured Mesenchymal Stromal Cells for Cartilage Repair. Int J Mol Sci 2024; 25:10627. [PMID: 39408956 PMCID: PMC11476526 DOI: 10.3390/ijms251910627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cartilage repair therapy due to their self-renewal, chondrogenic, and immunomodulatory capacities. It is widely recognized that a shift from fetal bovine serum (FBS)-containing medium toward a fully chemically defined serum-free (SF) medium would be necessary for clinical applications of MSCs to eliminate issues such as xeno-contamination and batch-to-batch variation. However, there is a notable gap in the literature regarding the evaluation of the chondrogenic ability of SF-expanded MSCs (SF-MSCs). In this study, we compared the in vivo regeneration effect of FBS-MSCs and SF-MSCs in a rat osteochondral defect model and found poor cartilage repair outcomes for SF-MSCs. Consequently, a comparative analysis of FBS-MSCs and SF-MSCs expanded using two SF media, MesenCult™-ACF (ACF), and Custom StemPro™ MSC SFM XenoFree (XF) was conducted in vitro. Our results show that SF-expanded MSCs constitute variations in morphology, surface markers, senescence status, differentiation capacity, and senescence/apoptosis status. Highly proliferative MSCs supported by SF medium do not always correlate to their chondrogenic and cartilage repair ability. Prior determination of the SF medium's ability to support the chondrogenic ability of expanded MSCs is therefore crucial when choosing an SF medium to manufacture MSCs for clinical application in cartilage repair.
Collapse
Affiliation(s)
- Meiqi Kang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Yanmeng Yang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Haifeng Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Yuan Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Yingnan Wu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Vinitha Denslin
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Rashidah Binte Othman
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Maeda S, Matsumoto M, Segawa K, Iwamoto K, Nakamura N. Development of scaffold-free tissue-engineered constructs derived from mesenchymal stem cells with serum-free media for cartilage repair and long-term preservation. Cytotechnology 2024; 76:595-612. [PMID: 39188648 PMCID: PMC11344744 DOI: 10.1007/s10616-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/18/2024] [Indexed: 08/28/2024] Open
Abstract
Synovial mesenchymal stem cells (sMSCs) have great potential for cartilage repair, but their therapeutic design to avoid adverse effects associated with unknown factors remains a challenge. In addition, because long-term preservation is indispensable to maintain high quality levels until implantation, it is necessary to reduce their fluctuations. This study aimed to investigate the properties and feasibility of novel scaffold-free tissue-engineered constructs using serum-free media and to develop long-term preservation methods. sMSCs were cultured in serum-free media, seeded at high density in a monolayer, and finally developed as a sheet-like construct called "gMSC1". The properties of frozen gMSC1 (Fro-gMSC1) were compared with those of refrigerated gMSC1 (Ref-gMSC1) and then examined by their profile. Chondrogenic differentiation potential was analyzed by quantitative real-time polymerase chain reaction and quantification of glycosaminoglycan content. Xenografts into the cartilage defect model in rats were evaluated by histological staining. gMSC1 showed nearly similar properties independent of the preservation conditions. The animal experiment demonstrated that the defect could be filled with cartilage-like tissue with good integration to the adjacent tissue, suggesting that gMSC1 was formed and replaced the cartilage. Furthermore, several chondrogenesis-related factors were significantly secreted inside and outside gMSC1. Morphological analysis of Fro-gMSC1 revealed comparable quality levels to those of fresh gMSC1. Thus, if cryopreserved, gMSC1, with no complicated materials or processes, could have sustained cartilage repair capacity. gMSC1 is a prominent candidate in novel clinical practice for cartilage repair, allowing for large quantities to be manufactured at one time and preserved for a long term by freezing. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00637-y.
Collapse
Affiliation(s)
- Satoshi Maeda
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Masaya Matsumoto
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Kotaro Segawa
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Kaori Iwamoto
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Norimasa Nakamura
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2–2 Yamadaoka, Suita, Osaka, 565–0871 Japan
| |
Collapse
|
4
|
Moldaschl J, Chariyev-Prinz F, Toegel S, Keck M, Hiden U, Egger D, Kasper C. Spheroid trilineage differentiation model of primary mesenchymal stem/stromal cells under hypoxia and serum-free culture conditions. Front Bioeng Biotechnol 2024; 12:1444363. [PMID: 39144480 PMCID: PMC11321963 DOI: 10.3389/fbioe.2024.1444363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Due to their unique properties, human mesenchymal stem/stromal cells (MSCs) possess tremendous potential in regenerative medicine, particularly in cell-based therapies where the multipotency and immunomodulatory characteristics of MSCs can be leveraged to address a variety of disease states. Although MSC-based cell therapeutics have emerged as one of the most promising medical treatments, the clinical translation is hampered by the variability of MSC-based cellular products caused by tissue source-specific differences and the lack of physiological cell culture approaches that closely mimic the human cellular microenvironment. In this study, a model for trilineage differentiation of primary adipose-, bone marrow-, and umbilical cord-derived MSCs into adipocytes, chondrocytes and osteoblasts was established and characterized. Differentiation was performed in spheroid culture, using hypoxic conditions and serum-free and antibiotics-free medium. This platform was characterized for spheroid diameter and trilineage differentiation capacity reflecting functionality of differentiated cells, as indicated by lineage-specific extracellular matrix (ECM) accumulation and expression of distinct secreted markers. The presented model shows spheroid growth during the course of differentiation and successfully supports trilineage differentiation for MSCs from almost all tissue sources except for osteogenesis of umbilical cord-derived MSCs. These findings indicate that this platform provides a suitable and favorable environment for trilineage differentiation of MSCs from various tissue sources. Therefore, it poses a promising model to generate highly relevant biological data urgently required for clinical translation and therefore might be used in the future to generate in vitro microtissues, building blocks for tissue engineering or as disease models.
Collapse
Affiliation(s)
- Julia Moldaschl
- Institute of Cell and Tissue Culture Technologies, BOKU University, Vienna, Austria
| | | | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Maike Keck
- Department of Plastic, Reconstructive and Aesthetic Surgery, Agaplesion Diakonieklinikum Hamburg, Hamburg, Germany
- Klinik für Plastische Chirurgie, Universität zu Lübeck, Lübeck, Germany
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Dominik Egger
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Kasper
- Institute of Cell and Tissue Culture Technologies, BOKU University, Vienna, Austria
| |
Collapse
|
5
|
Theodosaki AM, Tzemi M, Galanis N, Bakopoulou A, Kotsiomiti E, Aggelidou E, Kritis A. Bone Regeneration with Mesenchymal Stem Cells in Scaffolds: Systematic Review of Human Clinical Trials. Stem Cell Rev Rep 2024; 20:938-966. [PMID: 38407793 PMCID: PMC11087324 DOI: 10.1007/s12015-024-10696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
The aim of the study is to determine the effectiveness of stem cells in scaffolds in the treatment of bone deficits, in regard of bone regeneration, safety, rehabilitation and quality of life in humans. The systematic review was conducted in accordance with PRISMA 2020. A systematic search was conducted in three search engines and two registries lastly in 29-9-2022.for studies of the last 15 years. The risk of bias was assessed with RoB-2, ROBINS- I and NIH Quality of Before-After (Pre-Post) Studies with no Control group. The certainty of the results was assessed with the GRADE assessment tool. Due to heterogeneity, the results were reported in tables, graphs and narratively. The study protocol was published in PROSPERO with registration number CRD42022359049. Of the 10,091 studies retrieved, 14 were meeting the inclusion criteria, and were qualitatively analyzed. 138 patients were treated with mesenchymal stem cells in scaffolds, showing bone healing in all cases, and even with better results than the standard care. The adverse events were mild in most cases and in accordance with the surgery received. When assessed, there was a rehabilitation of the deficit and a gain in quality of life was detected. Although the heterogeneity between the studies and the small number of patients, the administration of mesenchymal stem cells in scaffolds seems safe and effective in the regeneration of bone defects. These results pave the way for the conduction of more clinical trials, with greater number of participants, with more standardized procedures.
Collapse
Affiliation(s)
- Astero Maria Theodosaki
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece.
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- , Thessaloniki, Greece.
| | - Maria Tzemi
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikiforos Galanis
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 1st Orthopaedic Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Eleni Kotsiomiti
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| |
Collapse
|
6
|
Chen S, Meng L, Wang S, Xu Y, Chen W, Wei J. Effect assessment of a type of xeno-free and serum-free human adipose-derived mesenchymal stem cells culture medium by proliferation and differentiation capacities. Cytotechnology 2023; 75:403-420. [PMID: 37655274 PMCID: PMC10465441 DOI: 10.1007/s10616-023-00586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/21/2023] [Indexed: 09/02/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) possess broad prospects in pre-clinical research. In vitro amplification of hMSCs requires appropriate medium to reach the number of seed cells with clinical significance. However, the uncertainty of the heterologous components of the traditional fetal bovine serum (FBS) culture medium has great safety risks. Moreover, existing commercial hMSCs medium is very expensive, therefore a safer and more optimal hMSCs medium is urgently needed. Accordingly, we developed five components adipose-derived hMSCs (hADMSCs) medium without xenogenic components, named E5 SFM. which is mainly composed of knockout serum replacement (KSR), and additionally four components such as fibroblast growth factor and transferrin. Here, we mainly compared the E5 SFM with traditional FBS-containing medium and a commercial medium by surface markers testing, proliferation assay as well as osteogenic, adipogenic and chondrogenic differentiation assessment. We demonstrated that hADMSCs cultured in the E5 SFM showed similar morphological characteristics and immunophenotypes to those in other media. Notably, cell proliferative capability was similar to that in the commercial medium, but higher than that in the FBS-containing medium and other media. Additionally, their capabilities of adipogenic and osteogenic differentiation were significantly higher than those of other media. Consequently, we concluded that the E5 SFM medium can not only effectively promote cell proliferation of hMSCs, but also has optimal differentiative capacity and clear and simple ingredients.
Collapse
Affiliation(s)
- Shanshan Chen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wenbin Chen
- Department of Plastic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burns and Plastic Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and the Second People’s Hospital of Huai’an City, Huai’an, China
| | - Jianfeng Wei
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Dolatyar B, Zeynali B, Shabani I, Parvaneh Tafreshi A. High-efficient serum-free differentiation of trabecular meshwork mesenchymal stem cells into Schwann-like cells on polylactide electrospun nanofibrous scaffolds. Neurosci Lett 2023; 813:137417. [PMID: 37549866 DOI: 10.1016/j.neulet.2023.137417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Cell-based therapies of the peripheral nerve injury (PNI) have provided satisfactory outcomes among which Schwann cells (SCs) are the most reliable candidate to improve repair of the damaged nerve, however, it is difficult to obtain sufficient amount of SCs for clinical applications. Trabecular meshwork-derived mesenchymal stem cells (TM-MSCs) are newly introduced neural crest originated MSCs, which may have a desirable potential for Schwann-like differentiation due to their common lineage. On the other hand, one of the challenges of cell-based therapies is usage of serum containing media which is inappropriate for clinical applications. In the present study, we investigated the differentiation potential of TM-MSCs into Schwann-like cells on polylactide (PLA) nanofibrous scaffolds in the presence or absence of serum. Our results revealed that PLA nanofibers had no negative effects on the cell growth and proliferation of TM-MSCs, and improved Schwann-like differentiation compared with tissue culture plates (TCPs). More importantly, when the cells cultured on the scaffold in the presence of serum-free media (SFM), expression mRNA levels of SC markers (S100B, GAP43, GFAP and SOX10) were significantly increased compared with those of serum-rich groups. Immunostaining of TM-MSCs cultured on serum-free PLA nanofibrous scaffolds also showed significant expression of GAP43, GFAP and SOX10 compared to those of control, indicating the efficient role of SFM in the differentiation of TM-MSCs into SCs lineage. Overall, the findings of this study revealed the differentiation potential of TM-MSCs to SC fate for the first time, and also showed the beneficial effects of SFM and PLA nanofibrous scaffolds as a promising approach for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Banafsheh Dolatyar
- Developmental Biology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azita Parvaneh Tafreshi
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
8
|
Perez-Diaz N, Hoffman E, Clements J, Cruickshank R, Doherty A, Ebner D, Elloway J, Fu J, Kelsall J, Millar V, Saib O, Scott A, Woods I, Hutter V. Longitudinal characterization of TK6 cells sequentially adapted to animal product-free, chemically defined culture medium: considerations for genotoxicity studies. FRONTIERS IN TOXICOLOGY 2023; 5:1177586. [PMID: 37469456 PMCID: PMC10353604 DOI: 10.3389/ftox.2023.1177586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: In vitro approaches are an essential tool in screening for toxicity of new chemicals, products and therapeutics. To increase the reproducibility and human relevance of these in vitro assessments, it is advocated to remove animal-derived products such as foetal bovine serum (FBS) from the cell culture system. Currently, FBS is routinely used as a supplement in cell culture medium, but batch-to-batch variability may introduce inconsistency in inter- and intra-lab assessments. Several chemically defined serum replacements (CDSR) have been developed to provide an alternative to FBS, but not every cell line adapts easily and successfully to CDSR-supplemented medium, and the long-term effect on cell characteristics remains uncertain. Aim: The aim of this study was to adapt the TK6 cell line to animal-product free CDSR-supplemented medium and evaluate the long-term effects on cell health, growth, morphology, phenotype, and function. This included a provisional assessment to determine the suitability of the transitioned cell line for standardised genotoxicity testing using the "in vitro mammalian cell micronucleus test" (OECD TG 487). Materials and methods: Gradual adaptation and direct adaptation methodologies were compared by assessing the cell proliferation, size and viability every passage until the cells were fully adapted to animal-free CDSR. The metabolic activity and membrane integrity was assessed every 4-8 passages by PrestoBlue and CytoTox-ONE™ Homogeneous Membrane Integrity Assay respectively. A detailed morphology study by high content imaging was performed and the expression of cell surface markers (CD19 and CD20) was conducted via flow cytometry to assess the potential for phenotypic drift during longer term culture of TK6 in animal-free conditions. Finally, functionality of cells in the OECD TG 487 assay was evaluated. Results: The baseline characteristics of TK6 cells cultured in FBS-supplemented medium were established and variability among passages was used to set up acceptance criteria for CDSR adapted cells. TK6 were adapted to CDSR supplemented medium either via direct or gradual transition reducing from 10% v/v FBS to 0% v/v FBS. The cell growth rate was compromised in the direct adaptation and therefore the gradual adaptation was preferred to investigate the long-term effects of animal-free CDSR on TK6 cells. The new animal cells showed comparable (p > 0.05) viability and cell size as the parent FBS-supplemented cells, with the exception of growth rate. The new animal free cells showed a lag phase double the length of the original cells. Cell morphology (cellular and nuclear area, sphericity) and phenotype (CD19 and CD20 surface markers) were in line (p > 0.05) with the original cells. The new cells cultured in CDSR-supplemented medium performed satisfactory in a pilot OECD TG 487 assay with compounds not requiring metabolic activation. Conclusion: TK6 cells were successfully transitioned to FBS- and animal product-free medium. The new cell cultures were viable and mimicked the characteristics of FBS-cultured cells. The gradual transition methodology utilised in this study can also be applied to other cell lines of interest. Maintaining cells in CDSR-supplemented medium eliminates variability from FBS, which in turn is likely to increase the reproducibility of in vitro experiments. Furthermore, removal of animal derived products from cell culture techniques is likely to increase the human relevance of in vitro methodologies.
Collapse
Affiliation(s)
| | | | | | | | - Ann Doherty
- Safety Sciences, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Joanne Elloway
- Safety Sciences, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jianan Fu
- PAN-Biotech GmbH, Aidenbach, Germany
| | | | - Val Millar
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Ouarda Saib
- Safety and Environmental Assurance Centre (SEAC), Unilever, Bedford, United Kingdom
| | - Andrew Scott
- Safety and Environmental Assurance Centre (SEAC), Unilever, Bedford, United Kingdom
| | - Ian Woods
- LabCorp Drug Development, Huntington, United Kingdom
| | - Victoria Hutter
- ImmuONE Limited, Hatfield, United Kingdom
- Centre for Topical Drug Delivery and Toxicology School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|