1
|
Drabeck DH, Wiese J, Gilbertson E, Arroyave J, Stiassny MLJ, Alter SE, Borowsky R, Hendrickson DA, Arcila D, McGaugh SE. Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments. Proc Biol Sci 2024; 291:20232847. [PMID: 38864338 DOI: 10.1098/rspb.2023.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.
Collapse
Affiliation(s)
- Danielle H Drabeck
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| | - Jonathan Wiese
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| | - Erin Gilbertson
- Department of Epidemiology and Biostatistics, University of San Francisco, University of California, San Francisco, CA, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY 10024, USA
| | - S Elizabeth Alter
- Biology and Chemistry Department, California State University Monterey Bay, Chapman Academic Science Center, Seaside, CA, USA
| | - Richard Borowsky
- Department of Biology, New York University, Washington Square, New York, NY 10003, USA
| | - Dean A Hendrickson
- Biodiversity Center, Texas Natural History Collections, University of Texas at Austin, Austin, TX 78758, USA
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St, Paul, MN 55108, USA
| |
Collapse
|
2
|
Sikder MM, Uyama T, Sasaki S, Kawai K, Araki N, Ueda N. PLAAT1 expression triggers fragmentation of mitochondria in an enzyme activity-dependent manner. J Biochem 2023; 175:101-113. [PMID: 37818970 DOI: 10.1093/jb/mvad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
The phospholipase A and acyltransferase (PLAAT) family is a protein family consisting of five members (PLAAT1-5), which acts as phospholipid-metabolizing enzymes with phospholipase A1/A2 and N-acyltransferase activities. Since we previously reported that the overexpression of PLAAT3 in mammalian cells causes the specific disappearance of peroxisomes, in the present study we examined a possible effect of PLAAT1 on organelles. We prepared HEK293 cells expressing mouse PLAAT1 in a doxycycline-dependent manner and found that the overexpression of PLAAT1 resulted in the transformation of mitochondria from the original long rod shape to a round shape, as well as their fragmentation. In contrast, the overexpression of a catalytically inactive point mutant of PLAAT1 did not generate any morphological change in mitochondria, suggesting the involvement of catalytic activity. PLAAT1 expression also caused the reduction of peroxisomes, while the levels of the marker proteins for ER, Golgi apparatus and lysosomes were almost unchanged. In PLAAT1-expressing cells, the level of dynamin-related protein 1 responsible for mitochondrial fission was increased, whereas those of optic atrophy 1 and mitofusin 2, both of which are responsible for mitochondrial fusion, were reduced. These results suggest a novel role of PLAAT1 in the regulation of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mohammad Mamun Sikder
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
3
|
Drabeck DH, Wiese J, Gilbertson E, Arroyave J, Arcila D, Alter SE, Borowsky R, Hendrickson D, Stiassny M, McGaugh SE. Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571336. [PMID: 38168154 PMCID: PMC10760033 DOI: 10.1101/2023.12.12.571336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family are phospholipases essential for the degradation of organelles in the lens of the eye. They translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny, and selection of plaat1 across bony fishes and tetrapods. We show that plaat1 (likely ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual acuity and blind mammals and fish. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light-environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.
Collapse
Affiliation(s)
- Danielle H Drabeck
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Jonathan Wiese
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Erin Gilbertson
- University of San Francisco, Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Dahiana Arcila
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - S Elizabeth Alter
- California State University Monterey Bay, Biology and Chemistry Department, Chapman Academic Science Center, Seaside, CA
| | - Richard Borowsky
- Department of Biology, New York University, Washington Square, New York, NY, 10003, USA
| | - Dean Hendrickson
- Biodiversity Center, Texas Natural History Collections, University of Texas at Austin, Austin, TX 78758, United States
| | - Melanie Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY 10024, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| |
Collapse
|
4
|
Tomczewski MV, Chan JZ, Al-Majmaie DM, Liu MR, Cocco AD, Stark KD, Strathdee D, Duncan RE. Phenotypic Characterization of Female Carrier Mice Heterozygous for Tafazzin Deletion. BIOLOGY 2023; 12:1238. [PMID: 37759637 PMCID: PMC10525480 DOI: 10.3390/biology12091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Barth syndrome (BTHS) is caused by mutations in tafazzin resulting in deficits in cardiolipin remodeling that alter major metabolic processes. The tafazzin gene is encoded on the X chromosome, and therefore BTHS primarily affects males. Female carriers are typically considered asymptomatic, but age-related changes have been reported in female carriers of other X-linked disorders. Therefore, we examined the phenotype of female mice heterozygous for deletion of the tafazzin gene (Taz-HET) at 3 and 12 months of age. Food intakes, body masses, lean tissue and adipose depot weights, daily activity levels, metabolic measures, and exercise capacity were assessed. Age-related changes in mice resulted in small but significant genotype-specific differences in Taz-HET mice compared with their female Wt littermates. By 12 months, Taz-HET mice weighed less than Wt controls and had smaller gonadal, retroperitoneal, and brown adipose depots and liver and brain masses, despite similar food consumption. Daily movement, respiratory exchange ratio, and total energy expenditure did not vary significantly between the age-matched genotypes. Taz-HET mice displayed improved glucose tolerance and insulin sensitivity at 12 months compared with their Wt littermates but had evidence of slightly reduced exercise capacity. Tafazzin mRNA levels were significantly reduced in the cardiac muscle of 12-month-old Taz-HET mice, which was associated with minor but significant alterations in the heart cardiolipin profile. This work is the first to report the characterization of a model of female carriers of heterozygous tafazzin deficiency and suggests that additional study, particularly with advancing age, is warranted.
Collapse
Affiliation(s)
- Michelle V. Tomczewski
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - John Z. Chan
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Duaa M. Al-Majmaie
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Ming Rong Liu
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Alex D. Cocco
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Ken D. Stark
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK;
| | - Robin E. Duncan
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| |
Collapse
|