1
|
Molinari GS, Wojno M, Kwasek K. Effects of dietary indispensable amino acid deficiencies on feed intake in stomachless fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111742. [PMID: 39276852 DOI: 10.1016/j.cbpa.2024.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Evidence suggests that fish are more tolerant than mammals to imbalanced dietary amino acid profiles. However, the behavioral and physiological responses of fish to individual deficiencies in dietary indispensable amino acids (IDAA) remain unclear. This study examined how stomachless fish respond to diets deficient in limiting IDAA (lysine, methionine, and threonine), using Zebrafish (Danio rerio) as a model. The response to deficient diets was assessed based on; 1) growth performance and feeding efficiency; 2) feed intake; 3) expression of appetite-regulating hormones and nutrient-sensing receptors; and 4) muscle postprandial free amino acid (FAA) levels. There were 6 treatments, each with 3 replicate tanks. A semi-purified diet was formulated for each group. The CG diet was based on casein and gelatin, while the FAA50 diet had 50 % of dietary protein supplied with crystalline amino acids. Both were formulated to contain matching, balanced amino acid profiles. The remaining diets were formulated the same as the FAA50 diet, with minor adjustments to create deficiencies in selected IDAA. The (-) Lys, (-) Met, and (-) Thr diets had lysine, methionine, and threonine withheld from the FAA mix, respectively, and the Def diet was deficient in all three. The juvenile Zebrafish were fed to satiation 3 times daily from 21 to 50 days-post-hatch. Results showed that 50 % replacement of dietary protein with crystalline amino acids significantly reduced growth of juvenile Zebrafish. There were no significant differences in growth between the FAA50 group and groups that received deficient diets. The deficiency of singular IDAA did not induce significant changes in feed intake; however, the combined deficiency in the Def diet caused a significant increase in feed intake. This increased feed intake led to decreased feeding efficiency. A significant decrease in feeding efficiency was also observed in the (-) Lys group. There was an observed upregulation of neuropeptide Y (NPY), an orexigenic hormone, in the Def group. Overall, results from this study suggest stomachless fish increase feed intake when challenged with IDAA-deficient diets, and the regulation of NPY might play a role in this response.
Collapse
Affiliation(s)
- Giovanni S Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, USA; Department of Biological Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
2
|
Comesaña S, Antomagesh F, Soengas JL, Blanco AM, Vijayan MM. Valine administration in the hypothalamus alters the brain and plasma metabolome in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2024; 327:R261-R273. [PMID: 38881412 DOI: 10.1152/ajpregu.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Central administration of valine has been shown to cause hyperphagia in fish. Although mechanistic target of rapamycin (mTOR) is involved in this response, the contributions to feed intake of central and peripheral metabolite changes due to excess valine are unknown. Here, we investigated whether intracerebroventricular injection of valine modulates central and peripheral metabolite profiles and may provide insights into feeding response in fish. Juvenile rainbow trout (Oncorhynchus mykiss) were administered an intracerebroventricular injection of valine (10 µg·µL-1 at 1 μL·100·g-1 body wt), and the metabolite profile in plasma, hypothalamus, and rest of the brain (composing of telencephalon, optic tectum, cerebellum, and medulla oblongata) was carried out by liquid chromatography-mass spectrometry (LC/MS)-based metabolomics. Valine administration led to a spatially distinct metabolite profile at 1 h postinjection in the brain: enrichment of amino acid metabolism and energy production pathways in the rest of the brain but not in hypothalamus. This suggests a role for extrahypothalamic input in the regulation of feed intake. Also, there was enrichment of several amino acids, including tyrosine, proline, valine, phenylalanine, and methionine, in plasma in response to valine. Changes in liver transcript abundance and protein expression reflect an increased metabolic capacity, including energy production from glucose and fatty acids, and a lower protein kinase B (Akt) phosphorylation in the valine group. Altogether, valine intracerebroventricular administration affects central and peripheral metabolism in rainbow trout, and we propose a role for the altered metabolite profile in modulating the feeding response to this branched-chain amino acid.NEW & NOTEWORTHY Valine causes hyperphagia in fish when it is centrally administered; however, the exact mechanisms are far from clear. We tested how intracerebroventricular injection of valine in rainbow trout affected the brain and plasma metabolome. The metabolite changes in response to valine were more evident in the rest of the brain compared with the hypothalamus. Furthermore, we demonstrated for the first time that central valine administration affects peripheral metabolism in rainbow trout.
Collapse
Affiliation(s)
- Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | | | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Ayelén M Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | | |
Collapse
|
3
|
Zhang N, Wang X, Han Z, Gong Y, Huang X, Chen N, Li S. The preferential utilization of hepatic glycogen as energy substrates in largemouth bass (Micropterus salmoides) under short-term starvation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:785-796. [PMID: 38108936 DOI: 10.1007/s10695-023-01285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
To elucidate the underlying mechanism of the energy metabolism in largemouth bass (Micropterus salmoides), cultured fish (initial body weight: 77.57 ± 0.75 g) in the present study were starved for 0 h, 12 h, 24 h, 48 h, 96 h and 192 h, respectively. The proximate composition analysis showed that short-term starvation induced a significant up-regulation in crude protein proportion in hepatic of cultured fish (P < 0.05). However, short-term starvation significantly decreased the hepatosomatic index and the viscerosomatic index of cultured fish (P < 0.05). The exact hepatic glycogen content in the group starved for 92 h presented remarkable decrease (P < 0.05). Meanwhile, compared with the weight change of lipid and protein (mg) in hepatic (y = 0.0007x2 - 0.2827x + 49.402; y = 0.0013x2 - 0.5666x + 165.31), the decreasing trend of weight in glycogen (mg) was more pronounced (y = 0.0032x2 - 1.817x + 326.52), which suggested the preferential utilization of hepatic glycogen as energy substrates under short-term starvation. Gene expression analysis revealed that the starvation down-regulated the expression of insulin-like growth factor 1 and genes of TOR pathway, such as target of rapamycin (tor) and ribosomal protein S6 (s6) (P < 0.05). In addition, the starvation significantly enhanced expression of lipolysis-related genes, including hormone-sensitive lipase (hsl) and carnitine palmitoyl transferase I (cpt1), but down-regulated lipogenesis as indicated by the inhibited expression of fatty acids synthase (fas), acetyl-CoA carboxylase 1 (acc1) and acetyl-CoA carboxylase 2 (acc2) (P < 0.05). Starvation of 24 h up-regulated the expression of glycolysis genes, glucokinase (gk), phosphofructokinase liver type (pfkl) and pyruvate kinase (pk), and then their expression returned to the normal level. Meanwhile, the expression of gluconeogenesis genes, such as glucose-6-phosphatase catalytic subunit (g6pc), fructose-1,6-bisphosphatase-1 (fbp1) and phosphoenolpyruvate carboxy kinase (pepck), was significantly inhibited with the short-term starvation (P < 0.05). In conclusion, short-term starvation induced an overall decline in growth performance, but it could deplete the hepatic glycogen accumulation and mobilize glycogen for energy effectively.
Collapse
Affiliation(s)
- Nihe Zhang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
| | - Xiaoyuan Wang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
| | - Zhihao Han
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
| | - Ye Gong
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
| | - Xuxiong Huang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China.
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Lysine or Threonine Deficiency Decreases Body Weight Gain in Growing Rats despite an Increase in Food Intake without Increasing Energy Expenditure in Response to FGF21. Nutrients 2022; 15:nu15010197. [PMID: 36615854 PMCID: PMC9824894 DOI: 10.3390/nu15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study is to evaluate the effects of a strictly essential amino acid (lysine or threonine; EAA) deficiency on energy metabolism in growing rats. Rats were fed for three weeks severely (15% and 25% of recommendation), moderately (40% and 60%), and adequate (75% and 100%) lysine or threonine-deficient diets. Food intake and body weight were measured daily and indirect calorimetry was performed the week three. At the end of the experimentation, body composition, gene expression, and biochemical analysis were performed. Lysine and threonine deficiency induced a lower body weight gain and an increase in relative food intake. Lysine or threonine deficiency induced liver FGF21 synthesis and plasma release. However, no changes in energy expenditure were observed for lysine deficiency, unlike threonine deficiency, which leads to a decrease in total and resting energy expenditure. Interestingly, threonine severe deficiency, but not lysine deficiency, increase orexigenic and decreases anorexigenic hypothalamic neuropeptides expression, which could explain the higher food intake. Our results show that the deficiency in one EAA, induces a decrease in body weight gain, despite an increased relative food intake, without any increase in energy expenditure despite an induction of FGF21.
Collapse
|