1
|
Xing J, Liu S. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects. Bone Joint Res 2024; 13:725-740. [PMID: 39631429 PMCID: PMC11617066 DOI: 10.1302/2046-3758.1312.bjr-2024-0048.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds' diverse roles and potential applications in bone defect treatment.
Collapse
Affiliation(s)
- Jinyi Xing
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Yao J, Guan A, Ruan W, Ma Y. In Situ Preparation of rGO-Cement Using Thermal Reduction Method and Performance Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1209. [PMID: 38473680 DOI: 10.3390/ma17051209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 03/14/2024]
Abstract
In this study, the combination of freeze-drying and high-temperature thermal reduction methods was employed to in situ prepare reduced graphene oxide (rGO)-Cement based on graphene oxide (GO)-Cement. The electrical conductivity and mechanical properties of the rGO-Cement were investigated. Microscopic analysis methods such as Raman spectra, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used to confirm the successful transformation of GO-Cement to rGO-Cement. The research results demonstrated that with an increase in rGO content, the electrical resistivity of the rGO-Cement decreased first and then increased, reaching a percolation threshold at the dosage of 0.7 wt.%. The compressive strength and flexural strength of the rGO-Cement increased first and then decreased. The optimal dosage of rGO was 0.7%. The in situ preparation of rGO-Cement using the thermal reduction method holds a great potential for various applications, providing new ideas and methods for the modification and enhancement of cement materials.
Collapse
Affiliation(s)
- Jie Yao
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
- Green Environmental Technology Research Institute, Shenzhen 518055, China
| | - Ao Guan
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
- Green Environmental Technology Research Institute, Shenzhen 518055, China
| | - Wenqiang Ruan
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Ma
- Green Environmental Technology Research Institute, Shenzhen 518055, China
| |
Collapse
|
4
|
Sakib S, Zou S. Attenuation of Chronic Inflammation in Intestinal Organoids with Graphene Oxide-Mediated Tumor Necrosis Factor-α_Small Interfering RNA Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38325360 PMCID: PMC10883062 DOI: 10.1021/acs.langmuir.3c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract with a complex and multifactorial etiology, making it challenging to treat. While recent advances in immunomodulatory biologics, such as antitumor necrosis factor-α (TNF-α) antibodies, have shown moderate success, systemic administration of antibody therapeutics may lead to several adverse effects, including the risk of autoimmune disorders due to systemic cytokine depletion. Transient RNA interference using exogenous short interfering RNA (siRNA) to regulate target gene expression at the transcript level offers an alternative to systemic immunomodulation. However, siRNAs are susceptible to premature degradation and have poor cellular uptake. Graphene oxide (GO) nanoparticles have been shown to be effective nanocarriers for biologics due to their reduced cytotoxicity and enhanced bioavailability. In this study, we evaluate the therapeutic efficacy of GO mediated TNF-α_siRNA using in vitro models of chronic inflammation generated by treating murine small intestines (enteroids) and large intestines (colonoids) with inflammatory agents IL-1β, TNF-α, and LPS. The organotypic mouse enteroids and colonoids developed an inflammatory phenotype similar to that of IBD, characterized by impaired epithelial homeostasis and an increased production of inflammatory cytokines such as TNF-α, IL-1β, and IL-6. We assessed siRNA delivery to these inflamed organoids using three different GO formulations. Out of the three, small-sized GO with polymer and dendrimer modifications (smGO) demonstrated the highest transfection efficiency, which led to the downregulation of inflammatory cytokines, indicating an attenuation of the inflammatory phenotype. Moreover, the transfection efficiency and inflammation-ameliorating effects could be further enhanced by increasing the TNF-α_siRNA/smGO ratio from 1:1 to 3:1. Overall, the results of this study demonstrate that ex vivo organoids with disease-specific phenotypes are invaluable models for assessing the therapeutic potential of nanocarrier-mediated drug and biologic delivery systems.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| |
Collapse
|
5
|
Dolores Merchán M, Pawar N, Santamaria A, Sánchez-Fernández R, Konovalov O, Maestro A, Mercedes Velázquez M. Structure of graphene oxide-phospholipid monolayers: A grazing incidence X-ray diffraction and neutron and X-ray reflectivity study. J Colloid Interface Sci 2024; 655:664-675. [PMID: 37972452 DOI: 10.1016/j.jcis.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
HYPOTHESIS Graphene oxide-based nanotechnology has aroused a great interest due to its applications in the biomedical and optoelectronic fields. The wide use of these materials makes it necessary to study its potential toxicity associated with the inhalation of Graphene Oxide (GO) nanoparticles and its interaction with the lung surfactant. Langmuir monolayers have proven to be an excellent tool for studying the properties of the lung surfactant and the effect of intercalation of nanoparticles on its structure and properties. Therefore, to know the origin of the phospholipids/GO interaction and the structure of the lipid layer with GO, in this work we study the effect of the insertion of GO sheets on a Langmuir film of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC). EXPERIMENTS Surface pressure-area isotherms, Neutron (NR) and X-ray Reflectivity (XRR) and Grazing Incidence X-ray Diffraction (GIXD) measurements of hydrogenated and deuterated DPPC monolayers with and without GO have been carried out. FINDINGS The results outline a strong interaction between the GO and the zwitterionic form of DPPC and prove that GO is in three regions of the DPPC monolayer, the aliphatic chains of DPPC, the head groups and water in the subphase. Comparison between results obtained with hydrogenated and deuterated DPPC allows concluding that both, electrostatic attractions, and dispersion forces are responsible of the interaction GO/DPPC. Results also demonstrated that the insertion of GO into the DPPC aliphatic chains does not induce significant changes on unit cell of DPPC.
Collapse
Affiliation(s)
- M Dolores Merchán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Grupo de Nanotecnología, Universidad de Salamanca, E37008 Salamanca, Spain; Laboratorio de Nanoelectrónica and Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain
| | - Nisha Pawar
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, E-20018 San Sebastián, Spain
| | | | - Rosalía Sánchez-Fernández
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Institut Max von Laue and Paul Langevin, 38042 Grenoble, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, 48009 Bilbao, Spain.
| | - M Mercedes Velázquez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Grupo de Nanotecnología, Universidad de Salamanca, E37008 Salamanca, Spain; Laboratorio de Nanoelectrónica and Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain.
| |
Collapse
|
6
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
7
|
Keremidarska-Markova M, Sazdova I, Ilieva B, Mishonova M, Shkodrova M, Hristova-Panusheva K, Krasteva N, Chichova M. Comprehensive Assessment of Graphene Oxide Nanoparticles: Effects on Liver Enzymes and Cardiovascular System in Animal Models and Skeletal Muscle Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:188. [PMID: 38251152 PMCID: PMC10818754 DOI: 10.3390/nano14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The growing interest in graphene oxide (GO) for different biomedical applications requires thoroughly examining its safety. Therefore, there is an urgent need for reliable data on how GO nanoparticles affect healthy cells and organs. In the current work, we adopted a comprehensive approach to assess the influence of GO and its polyethylene glycol-modified form (GO-PEG) under near-infrared (NIR) exposure on several biological aspects. We evaluated the contractility of isolated frog hearts, the activity of two rat liver enzymes-mitochondrial ATPase and diamine oxidase (DAO), and the production of reactive oxygen species (ROS) in C2C12 skeletal muscle cells following direct exposure to GO nanoparticles. The aim was to study the influence of GO nanoparticles at multiple levels-organ; cellular; and subcellular-to provide a broader understanding of their effects. Our data demonstrated that GO and GO-PEG negatively affect heart contractility in frogs, inducing stronger arrhythmic contractions. They increased ROS production in C2C12 myoblasts, whose effects diminished after NIR irradiation. Both nanoparticles in the rat liver significantly stimulated DAO activity, with amplification of this effect after NIR irradiation. GO did not uncouple intact rat liver mitochondria but caused a concentration-dependent decline in ATPase activity in freeze/thaw mitochondria. This multifaceted investigation provides crucial insights into GOs potential for diverse implications in biological systems.
Collapse
Affiliation(s)
- Milena Keremidarska-Markova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Iliyana Sazdova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Bilyana Ilieva
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Milena Mishonova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Milena Shkodrova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mariela Chichova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| |
Collapse
|
8
|
Grilli F, Hassan EM, Variola F, Zou S. Harnessing graphene oxide nanocarriers for siRNA delivery in a 3D spheroid model of lung cancer. Biomater Sci 2023; 11:6635-6649. [PMID: 37609774 DOI: 10.1039/d3bm00732d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Gene therapy has been recently proposed as an effective strategy for cancer treatment. A significant body of literature proved the effectiveness of nanocarriers to deliver therapeutic agents to 2D tumour models, which are simple but not always representative of the in vivo reality. In this study, we analyze the efficiency of 3D spheroids combined with a minimally modified graphene oxide (GO)-based nanocarrier for siRNA delivery as a new system for cell transfection. Small interfering RNA (siRNA) targeting cluster of differentiation 47 (CD47; CD47_siRNA) was used as an anti-tumour therapeutic agent to silence the genes expressing CD47. This is a surface marker able to send a "don't eat me" signal to macrophages to prevent their phagocytosis. Also, we report the analysis of different GO formulations, in terms of size (small: about 100 nm; large: >650 nm) and functionalization (unmodified or modified with polyethylene glycol (PEG) and the dendrimer PAMAM), aiming to establish the efficiency of unmodified GO as a nanocarrier for the transfection of A549 lung cancer spheroids. Small modified GO (smGO) showed the highest transfection efficiency values (>90%) in 3D models. Interestingly, small unmodified GO (sGO) was found to be promising for transfection, with efficiency values >80% using a higher siRNA ratio (i.e., 3 : 1). These results demonstrated the higher efficiency of spheroids compared to 2D models for transfection, and the high potential of unmodified GO to carry siRNA, providing a promising new in vitro model system for the analysis of anticancer gene therapies.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Eman M Hassan
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
9
|
Qin B, Wu S, Dong H, Deng S, Liu Y, Zhang W, Feng G, Lei L, Xie H. Accelerated Healing of Infected Diabetic Wounds by a Dual-Layered Adhesive Film Cored with Microsphere-Loaded Hydrogel Composite Dressing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33207-33222. [PMID: 37418597 DOI: 10.1021/acsami.2c22650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Diabetic wounds, a prevalent chronic disease, are associated with older age. The hyperglycemic microenvironment in diabetic wounds significantly reduces the immune system, inducing bacterial invasion. The coupling of tissue repair and antibacterial treatment is critical for infected diabetic ulcer regeneration. In this study, a dual-layered sodium alginate/carboxymethyl chitosan (SA/CMCS) adhesive film cored with an SA-bFGF microsphere-loaded small intestine submucosa (SIS) hydrogel composite dressing with a graphene oxide (GO)-based antisense transformation system was developed to promote infected diabetic wound healing and bacterial eradication. Initially, our injectable SIS-based hydrogel composite stimulated angiogenesis, collagen deposition, and immunoregulation in diabetic wound repair. The GO-based transformation system subsequently inhibited bacterial viability in infected wounds by post-transformation regulation. Meanwhile, the SA/CMCS film provided stable adhesion covering the wound area to maintain a moist microenvironment, which promoted in situ tissue repair. Our findings provide a promising clinical translation strategy for promoting the healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Boquan Qin
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shizhou Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxian Dong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shu Deng
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02215-1300, United States
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wanli Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Guoying Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
10
|
Hassan EM, McWhirter S, Walker GC, Martinez-Rubi Y, Zou S. Elimination of Cancer Cells in Co-Culture: Role of Different Nanocarriers in Regulation of CD47 and Calreticulin-Induced Phagocytosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3791-3803. [PMID: 36632842 PMCID: PMC9880957 DOI: 10.1021/acsami.2c19311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Under healthy conditions, pro- and anti-phagocytic signals are balanced. Cluster of Differentiation 47 (CD47) is believed to act as an anti-phagocytic marker that is highly expressed on multiple types of human cancer cells including acute myeloid leukemia (AML) and lung and liver carcinomas, allowing them to escape phagocytosis by macrophages. Downregulating CD47 on cancer cells discloses calreticulin (CRT) to macrophages and recovers their phagocytic activity. Herein, we postulate that using a modified graphene oxide (GO) carrier to deliver small interfering RNA (siRNA) CD47 (CD47_siRNA) in AML, A549 lung, and HepG2 liver cancer cells in co-culture in vitro will silence CD47 and flag cancer cells for CRT-mediated phagocytosis. Results showed a high knockdown efficiency of CD47 and a significant increase in CRT levels simultaneously by using GO formulation as carriers in all used cancer cell lines. The presence of CRT on cancer cells was significantly higher than levels before knockdown of CD47 and was required to achieve phagocytosis in co-culture with human macrophages. Lipid nanoparticles (LNPs) and modified boron nitride nanotubes (BNPs) were used to carry CD47_siRNA, and the knockdown efficiency values of CD47 were compared in three cancer cells in co-culture, with an achieved knockdown efficiency of >95% using LNPs as carriers. Interestingly, the high efficiency of CD47 knockdown was obtained by using the LNPs and BNP carriers; however, an increase in CRT levels on cancer cells was not required for phagocytosis to happen in co-culture with human macrophages, indicating other pathways' involvement in the phagocytosis process. These findings highlight the roles of 2D (graphene oxide), 1D (boron nitride nanotube), and "0D" (lipid nanoparticle) carriers for the delivery of siRNA to eliminate cancer cells in co-culture, likely through different phagocytosis pathways in multiple types of human cancer cells. Moreover, these results provide an explanation of immune therapies that target CD47 and the potential use of these carriers in screening drugs for such therapies in vitro.
Collapse
Affiliation(s)
- Eman M. Hassan
- Metrology
Research Centre, National Research Council
Canada, 100 Sussex Drive, Ottawa, OntarioK1A0R6, Canada
| | - Samantha McWhirter
- Department
of Chemistry, University of Toronto, 80 St. George St., Toronto, OntarioM5S3H6, Canada
| | - Gilbert C. Walker
- Department
of Chemistry, University of Toronto, 80 St. George St., Toronto, OntarioM5S3H6, Canada
| | - Yadienka Martinez-Rubi
- Security
and Disruptive Technologies, National Research
Council Canada, 100 Sussex Drive, Ottawa, OntarioK1A0R6, Canada
| | - Shan Zou
- Metrology
Research Centre, National Research Council
Canada, 100 Sussex Drive, Ottawa, OntarioK1A0R6, Canada
- Department
of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, OntarioK1S5B6, Canada
| |
Collapse
|
11
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|