1
|
Mogîldea ED, Mitoi ME, Biță-Nicolae C, Murariu D. Urban Flora Riches: Unraveling Metabolic Variation Along Altitudinal Gradients in Two Spontaneous Plant Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:657. [PMID: 38475503 DOI: 10.3390/plants13050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Using resilient, self-sustaining plants in urban green spaces enhances environmental and cultural benefits and reduces management costs. We assessed two spontaneous plant species, Linaria vulgaris Mill. and Cichorium intybus L., in four sites from the surrounding urban areas, ranging in altitude from 78 to 1040 m. Protection against UV-B radiation is crucial for plants at higher altitudes, guiding our focus on UV-visible absorption spectra, fluorometric emission spectra, secondary metabolite accumulation, and pigment dynamics in leaves. Our findings revealed a slight increase in UV-absorbing compounds with altitude and species-specific changes in visible spectra. The UV-emission of fluorochromes decreased, while red emission increased with altitude but only in chicory. Polyphenols and flavonoids showed a slight upward trend with altitude. Divergent trends were observed in condensed tannin accumulation, with L. vulgaris decreasing and C. intybus increasing with altitude. Additionally, chicory leaves from higher altitudes (792 and 1040 m) contained significantly lower triterpene concentrations. In L. vulgaris, chlorophyll pigments and carotenoids varied with sites, contrasting with UV absorbance variations. For C. intybus, pigment variation was similar to absorbance changes in the UV and VIS range, except at the highest altitude. These observations provide valuable insights into species-specific strategies for adapting to diverse environmental contexts.
Collapse
Affiliation(s)
- Elena Daniela Mogîldea
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Monica Elena Mitoi
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
| | - Claudia Biță-Nicolae
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
| | - Dumitru Murariu
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
2
|
Che G, Chen M, Li X, Xiao J, Liu L, Guo L. Effect of UV-A Irradiation on Bioactive Compounds Accumulation and Hypoglycemia-Related Enzymes Activities of Broccoli and Radish Sprouts. PLANTS (BASEL, SWITZERLAND) 2024; 13:450. [PMID: 38337982 PMCID: PMC10857714 DOI: 10.3390/plants13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In the present study, different intensities of UV-A were applied to compare their effects on growth, bioactive compounds and hypoglycemia-related enzyme activities in broccoli and radish sprouts. The growth of sprouts was decreased after UV-A irradiation. A total of 12 W of UV-A irradiation resulted in the highest content of anthocyanin, chlorophyll, polyphenol and ascorbic acid in broccoli and radish sprouts. The highest soluble sugar content was recorded in sprouts under 8 W of UV-A irradiation, while no significant difference was obtained in soluble protein content among different UV-A intensities. Furthermore, 12 W of UV-A irradiation induced the highest glucosinolate accumulation, especially glucoraphanin and glucoraphenin in broccoli and radish sprouts, respectively; thus, it enhanced sulforaphane and sulforaphene formation. The α-amylase, α-glucosidase and pancrelipase inhibitory rates of two kinds of sprouts were enhanced significantly after UV-A irradiation, indicating UV-A-irradiation-treated broccoli and radish sprouts have new prospects as hypoglycemic functional foods.
Collapse
Affiliation(s)
- Gongheng Che
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Mingmei Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|
3
|
Garegnani M, Sandri C, Pacelli C, Ferranti F, Bennici E, Desiderio A, Nardi L, Villani ME. Non-destructive real-time analysis of plant metabolite accumulation in radish microgreens under different LED light recipes. FRONTIERS IN PLANT SCIENCE 2024; 14:1289208. [PMID: 38273958 PMCID: PMC10808373 DOI: 10.3389/fpls.2023.1289208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
Introduction The future of human space missions relies on the ability to provide adequate food resources for astronauts and also to reduce stress due to the environment (microgravity and cosmic radiation). In this context, microgreens have been proposed for the astronaut diet because of their fast-growing time and their high levels of bioactive compounds and nutrients (vitamins, antioxidants, minerals, etc.), which are even higher than mature plants, and are usually consumed as ready-to-eat vegetables. Methods Our study aimed to identify the best light recipe for the soilless cultivation of two cultivars of radish microgreens (Raphanus sativus, green daikon, and rioja improved) harvested eight days after sowing that could be used for space farming. The effects on plant metabolism of three different light emitting diodes (LED) light recipes (L1-20% red, 20% green, 60% blue; L2-40% red, 20% green, 40% blue; L3-60% red, 20% green, 20% blue) were tested on radish microgreens hydroponically grown. A fluorimetric-based technique was used for a real-time non-destructive screening to characterize plant methabolism. The adopted sensors allowed us to quantitatively estimate the fluorescence of flavonols, anthocyanins, and chlorophyll via specific indices verified by standardized spectrophotometric methods. To assess plant growth, morphometric parameters (fresh and dry weight, cotyledon area and weight, hypocotyl length) were analyzed. Results We observed a statistically significant positive effect on biomass accumulation and productivity for both cultivars grown under the same light recipe (40% blue, 20% green, 40% red). We further investigated how the addition of UV and/or far-red LED lights could have a positive effect on plant metabolite accumulation (anthocyanins and flavonols). Discussion These results can help design plant-based bioregenerative life-support systems for long-duration human space exploration, by integrating fluorescence-based non-destructive techniques to monitor the accumulation of metabolites with nutraceutical properties in soilless cultivated microgreens.
Collapse
Affiliation(s)
- Marco Garegnani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
- Department of Aerospace Science and Technology, Politecnico of Milano, Milan, Italy
| | - Carla Sandri
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Claudia Pacelli
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Francesca Ferranti
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Elisabetta Bennici
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Luca Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Maria Elena Villani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| |
Collapse
|
4
|
Kocsy G, Müller M. Light-Dependent Control of Metabolism in Plants. Int J Mol Sci 2023; 24:13861. [PMID: 37762165 PMCID: PMC10531051 DOI: 10.3390/ijms241813861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
The energy of sunlight is converted into chemical energy during photosynthesis in plants [...].
Collapse
Affiliation(s)
- Gábor Kocsy
- Institute of Biology, Plant Sciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria Müller
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| |
Collapse
|
5
|
Wei Y, Wang S, Yu D. The Role of Light Quality in Regulating Early Seedling Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:2746. [PMID: 37514360 PMCID: PMC10383958 DOI: 10.3390/plants12142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
It is well-established that plants are sessile and photoautotrophic organisms that rely on light throughout their entire life cycle. Light quality (spectral composition) is especially important as it provides energy for photosynthesis and influences signaling pathways that regulate plant development in the complex process of photomorphogenesis. During previous years, significant progress has been made in light quality's physiological and biochemical effects on crops. However, understanding how light quality modulates plant growth and development remains a complex challenge. In this review, we provide an overview of the role of light quality in regulating the early development of plants, encompassing processes such as seed germination, seedling de-etiolation, and seedling establishment. These insights can be harnessed to improve production planning and crop quality by producing high-quality seedlings in plant factories and improving the theoretical framework for modern agriculture.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Zhang Y, Liu Y, Ling L, Huo W, Li Y, Xu L, Xiang L, Yang Y, Xiong X, Zhang D, Yu X, Li Y. Phenotypic, Physiological, and Molecular Response of Loropetalum chinense var. rubrum under Different Light Quality Treatments Based on Leaf Color Changes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112169. [PMID: 37299148 DOI: 10.3390/plants12112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Light quality is a vital environmental signal used to trigger growth and to develop structural differentiation in plants, and it influences morphological, physiological, and biochemical metabolites. In previous studies, different light qualities were found to regulate the synthesis of anthocyanin. However, the mechanism of the synthesis and accumulation of anthocyanins in leaves in response to light quality remains unclear. In this study, the Loropetalum chinense var. rubrum "Xiangnong Fendai" plant was treated with white light (WL), blue light (BL), ultraviolet-A light (UL), and blue light plus ultraviolet-A light (BL + UL), respectively. Under BL, the leaves were described as increasing in redness from "olive green" to "reddish-brown". The chlorophyll, carotenoid, anthocyanin, and total flavonoid content were significantly higher at 7 d than at 0 d. In addition, BL treatment also significantly increased the accumulation of soluble sugar and soluble protein. In contrast to BL, ultraviolet-A light increased the malondialdehyde (MDA) content and the activities of three antioxidant enzymes in the leaves, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), in varying degrees over time. Moreover, we also found that the CRY-like gene, HY5-like gene, BBX-like gene, MYB-like gene, CHS-like gene, DFR-like gene, ANS-like gene, and UFGT-like gene were significantly upregulated. Furthermore, the SOD-like, POD-like, and CAT-like gene expressions related to antioxidase synthesis were found under ultraviolet-A light conditions. In summary, BL is more conducive to reddening the leaves of "Xiangnong Fendai" and will not lead to excessive photooxidation. This provides an effective ecological strategy for light-induced leaf-color changes, thereby promoting the ornamental and economic value of L. chinense var. rubrum.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yang Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lin Ling
- School of Economics, Hunan Agricultural University, Changsha 410128, China
| | - Wenwen Huo
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yang Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lili Xiang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yujie Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Xingyao Xiong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
- Agricultural Genomics Institute at Shenzheng, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Donglin Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
| | - Yanlin Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
7
|
RNA-Seq Analysis Demystify the Pathways of UV-A Supplementation in Different Photoperiods Integrated with Blue and Red Light on Morphology and Phytochemical Profile of Kale. Antioxidants (Basel) 2023; 12:antiox12030737. [PMID: 36978985 PMCID: PMC10045344 DOI: 10.3390/antiox12030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
As an indispensable element in the morphology and phytochemical profile of plants, UV-A has proved to help promote the growth and quality of kale. In this study, UV-A supplementation in different photoperiods (light period supplemental UVA = LS, dark period supplemental UVA = DS, and light-dark period supplemental UVA = LDS) contributed to yielding greater biomass production (fresh weight, dry weight, and plant moisture content), thus improving morphology (plant height, stem diameter, etc.) and promoting higher phytochemicals content (flavonoids, vitamin c, etc.), especially glucosinolates. To fathom its mechanisms, this study, using RNA-seq, verified that UV-A supplementation treatments signally generated related DEGs of plant hormone signal pathway, circadian rhythm plant pathway, glucosinolate pathway, etc. Moreover, 2047 DEGs were obtained in WGCNA, illustrating the correlations between genes, treatments, and pathways. Additionally, DS remarkedly up-regulated related DEGs of the key pathways and ultimately contributed to promoting the stem diameter, plant height, etc., thus increasing the pigment, biomass, vitamin c, etc., enhancing the antioxidant capacity, and most importantly, boosting the accumulations of glucosinolates in kale. In short, this study displayed new insights into UV-A supplementation affected the pathways related to the morphology and phytochemical profile of kale in plant factories.
Collapse
|
8
|
Hu Y, Li X, He X, He R, Li Y, Liu X, Liu H. Effects of Pre-Harvest Supplemental UV-A Light on Growth and Quality of Chinese Kale. Molecules 2022; 27:molecules27227763. [PMID: 36431864 PMCID: PMC9695120 DOI: 10.3390/molecules27227763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of supplemental UV-A (385 nm) period and UV-A intensity for 5 days before harvest (DBH) on growth, antioxidants, antioxidant capacity, and glucosinolates contents in Chinese kale (Brassica oleracea var. alboglabra Bailey) were studied in plant factory. In the experiment of the UV-A period, three treatments were designed with 10 W·m-2 UV-A supplement, T1(5 DBH), T2 (10 DBH), and no supplemental UV-A as control. In the experiment of UV-A intensity, four treatments were designed with 5 DBH, control (0 W·m-2), 5 w (5 W·m-2), 10 w (10 W·m-2), and 15 w (15 W·m-2). The growth light is as follows: 250 μmol·m-2·s-1; red light: white light = 2:3; photoperiod: 12/12. The growth and quality of Chinese kale were improved by supplemental UV-A LED. The plant height, stem diameter, and biomass of Chinese kale were the highest in the 5 W·m-2 treatment for 5 DBH. The contents of chlorophyll a, chlorophyll b, and total chlorophyll were only highly increased by 5 W·m-2 UV-A for 5 DBH, while there was no significant difference in the content of carotenoid among all treatments. The contents of soluble sugar and free amino acid were higher only under 10 DBH treatments than in control. The contents of total phenolic and total antioxidant capacity were the highest in 5 W·m-2 treatment for 5 DBH. There was a significant positive correlation between total phenolic content and DPPH and FRAP value. After 5 DBH treatments, the percentages and contents of total aliphatic glucosinolates, sinigrin (SIN), gluconapin (GNA), and glucobrassicanapin (GBN) were highly increased, while the percentages and contents of glucobrassicin (GBS), 4-methoxyglucobrassicin (4-MGBS), and Progoitrin (PRO) were significantly decreased, especially under 10 W·m-2 treatment. Our results show that UV-A LED supplements could improve the growth and quality of Chinese kale, and 5 W·m-2 UV-A LED with 5 DBH might be feasible for Chinese kale growth, and 10 W·m-2 UV-A LED with 5 DBH was better for aliphatic glucosinolates accumulation in Chinese kale.
Collapse
|