1
|
Jin X, Rosenbohm J, Moghaddam AO, Kim E, Seiffert-Sinha K, Leiker M, Zhai H, Baddam SR, Minnick G, Huo Y, Safa BT, Wahl JK, Meng F, Huang C, Lim JY, Conway DE, Sinha AA, Yang R. Desmosomal Cadherin Tension Loss in Pemphigus Vulgaris Mediated by the Inhibition of Active RhoA at Cell-Cell Adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592394. [PMID: 38766211 PMCID: PMC11100601 DOI: 10.1101/2024.05.03.592394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Amir Ostadi Moghaddam
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Merced Leiker
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Haiwei Zhai
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Sindora R. Baddam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Yucheng Huo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - James K. Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Fanben Meng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210
| | - Animesh A. Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Xie Z, Dai X, Li Q, Lin S, Ye X. Tacrolimus reverses pemphigus vulgaris serum-induced depletion of desmoglein in HaCaT cells via inhibition of heat shock protein 27 phosphorylation. BMC Immunol 2023; 24:43. [PMID: 37940861 PMCID: PMC10634089 DOI: 10.1186/s12865-023-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Glucocorticoids are the first-line treatment for Pemphigus vulgaris (PV), but its serious side effects can be life-threatening for PV patients. Tacrolimus (FK506) has been reported to have an adjuvant treatment effect against PV. However, the mechanism underlying the inhibitory effect of FK506 on PV-IgG-induced acantholysis is unclear. OBJECTIVE The objective of this study was to explore the effect of FK506 on desmoglein (Dsg) expression and cell adhesion in an immortalized human keratinocyte cell line (HaCaT cells) stimulated with PV sera. METHODS A cell culture model of PV was established by stimulating HaCaT cells with 5% PV sera with or without FK506 and clobetasol propionate (CP) treatment. The effects of PV sera on intercellular junctions and protein levels of p38 mitogen-activated protein kinase (p38MAPK), heat shock protein 27 (HSP27), and Dsg were assayed using western blot analysis, immunofluorescence staining, and a keratinocyte dissociation assay. RESULTS PV sera-induced downregulation of Dsg3 was observed in HaCaT cells and was blocked by FK506 and/or CP. Immunofluorescence staining revealed that linear deposits of Dsg3 on the surface of HaCaT cells in the PV sera group disappeared and were replaced by granular and agglomerated fluorescent particles on the cell surface; however, this effect was reversed by FK506 and/or CP treatment. Furthermore, cell dissociation assays showed that FK506 alone or in combination with CP increased cell adhesion in HaCaT cells and ameliorated loss of cell adhesion induced by PV sera. Additionally, FK506 noticeably decreased the PV serum-induced phosphorylation of HSP 27, but had no effect on p38MAPK phosphorylation. CONCLUSION FK506 reverses PV-IgG induced-Dsg depletion and desmosomal dissociation in HaCaT cells, and this effect may be obtained by inhibiting HSP27 phosphorylation.
Collapse
Affiliation(s)
- Zhimin Xie
- Department of Dermatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangnong Dai
- Department of Dermatology, Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong, China
| | - Qingqing Li
- Department of Dermatology, Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong, China
| | - Sifan Lin
- Department of Dermatology, Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong, China
| | - Xingdong Ye
- Department of Dermatology, Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Hartmann V, Hariton WV, Rahimi S, Hammers CM, Ludwig RJ, Müller EJ, Hundt JE. The human skin organ culture model as an optimal complementary tool for murine pemphigus models. Lab Anim 2023; 57:381-395. [PMID: 36647613 DOI: 10.1177/00236772221145647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pemphigus is a severe autoimmune bullous disease of the skin and/or mucous membranes caused by autoantibodies that mainly target the adhesion proteins desmoglein (Dsg) 3 and/or Dsg1. Clinically, pemphigus is characterized by flaccid blistering, leading to severe water and electrolyte loss. Before the introduction of corticosteroid treatment, the disease turned out to be fatal in many cases. Despite recent therapeutic improvements, treatment of pemphigus patients is centred on prolonged systemic immunosuppression and remains challenging. Current drug development for pemphigus has a strong focus on disease-causing B cells and autoantibodies and, more recently, also on modulating autoantibody-induced tissue pathology and keratinocyte signalling. This drug development requires reliable pre-clinical model systems replicating the pathogenesis of the human disease. Among those are neonatal and adult mouse models based on the transfer of Dsg3, Dsg1/3 or Dsg1-specific autoantibodies. To reduce the number of animal experiments, we recently established a standardized human skin organ culture (HSOC) model for pemphigus. This model reproduces the clinical phenotype of autoantibody-induced tissue pathology in pemphigus vulgaris. For induction of blistering, a recombinant single-chain variable fragment (scFv) targeting both Dsg1 and 3 is injected into pieces of human skin (obtained from plastic surgeries). Further characterization of the HSOC model demonstrated that key morphologic, molecular and immunologic features of pemphigus are being replicated. Thus, the pemphigus HSOC model is an excellent alternative to pemphigus animal model systems that are based on the transfer of (auto)antibodies.
Collapse
Affiliation(s)
- Veronika Hartmann
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - William Vj Hariton
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | - Siavash Rahimi
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
- Centre for Research on Inflammation of the Skin, University of Lübeck, Germany
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Germany
| | - Eliane J Müller
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
- Centre for Research on Inflammation of the Skin, University of Lübeck, Germany
| |
Collapse
|
4
|
Li PH, Lau CS. Shedding Light on Skin Autoimmunity: More than Just Skin Deep. Int J Mol Sci 2023; 24:12077. [PMID: 37569452 PMCID: PMC10419224 DOI: 10.3390/ijms241512077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Our skin is the largest organ of the body and the foremost defensive barrier against the external environment [...].
Collapse
Affiliation(s)
- Philip Hei Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong
| | | |
Collapse
|
5
|
Valentino A, Leuci S, Galderisi U, Spagnuolo G, Mignogna MD, Peluso G, Calarco A. Plasma Exosomal microRNA Profile Reveals miRNA 148a-3p Downregulation in the Mucosal-Dominant Variant of Pemphigus Vulgaris. Int J Mol Sci 2023; 24:11493. [PMID: 37511259 PMCID: PMC10380621 DOI: 10.3390/ijms241411493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mucosal-dominant variant of pemphigus vulgaris (MPV) is an autoimmune disease characterized by oral mucosal blistering and circulating pathogenic IgG antibodies against desmoglein 3 (Dsg3), resulting in life-threatening bullae and erosion formation. Recently, microRNAs (miRNAs) have emerged as promising players in the diagnosis and prognosis of several pathological states. For the first time, we have identified a different expression profile of miRNAs isolated from plasma-derived exosomes (P-EVs) of MPV patients positive for antibodies against Dsg3 (Dsg3-positive) compared to healthy controls. Moreover, a dysregulated miRNA profile was confirmed in MPV tissue biopsies. In particular, a strong downregulation of the miR-148a-3p expression level in P-EVs of MPV patients compared to healthy controls was demonstrated. Bioinformatics prediction analysis identifies metalloproteinase-7 (MMP7) as a potential miR-148a-3p target. An in vitro acantholysis model revealed that the miR-148a-3p expression level was dramatically downregulated after treatment with Dsg3 autoantibodies, with a concomitant increase in MMP7 expression. The increased expression of MMP7 leads to the disruption of intercellular and/or extracellular matrix adhesion in an in vitro cellular model of MPV, with subsequent cell dissociation. Overexpression of miR-148a-3p prevented cell dissociation and regressed MMP7 upregulation. Our findings suggest a pivotal role of P-EV cargo in regulating molecular mechanisms involved in MPV pathogenesis and indicate them as potential MPV therapeutic targets.
Collapse
Affiliation(s)
- Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Stefania Leuci
- Oral Medicine Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (G.S.); (M.D.M.)
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli, 80100 Naples, Italy;
| | - Gianrico Spagnuolo
- Oral Medicine Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (G.S.); (M.D.M.)
| | - Michele Davide Mignogna
- Oral Medicine Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80138 Naples, Italy; (S.L.); (G.S.); (M.D.M.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (A.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (A.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
6
|
Lotti R, Atene CG, Zanfi ED, Bertesi M, Pincelli C, Zanocco-Marani T. A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants. BIOLOGY 2023; 12:biology12050702. [PMID: 37237515 DOI: 10.3390/biology12050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Background: Pemphigus is a life-threatening blistering autoimmune disease. Several forms, characterized by the presence of autoantibodies against different autoantigens, have been described. In Pemphigus Vulgaris (PV), autoantibodies target the cadherin Desmoglein 3 (DSG3), while in Pemphigus foliaceous (PF) autoantibodies target the cadherin Desmoglein 1 (DSG1). Another variant, mucocutaneous Pemphigus, is characterized by the presence of IgG against both DSG1 and DSG3. Moreover, other forms of Pemphigus characterized by the presence of autoantibodies against other autoantigens have been described. With regard to animal models, one can distinguish between passive models, where pathological IgG are transferred into neonatal mice, and active models, where B cells deriving from animals immunized against a specific autoantigen are transferred into immunodeficient mice that develop the disease. Active models recreate PV and a form of Pemphigus characterized by the presence of IgG against the cadherin Desmocollin 3 (DSC3). Further approaches allow to collect sera or B/T cells from mice immunized against a specific antigen to evaluate the mechanisms underlying the onset of the disease. Objective: To develop and characterize a new active model of Pemphigus where mice express auto antibodies against either DSG1 alone, or DSG1 and DSG3, thereby recapitulating PF and mucocutaneous Pemphigus, respectively. In addition to the existing models, with the active models reported in this work, it will be possible to recapitulate and mimic the main forms of pemphigus in adult mice, thus allowing a better understanding of the disease in the long term, including the benefit/risk ratio of new therapies. Results: The new DSG1 and the DSG1/DSG3 mixed models were developed as proposed. Immunized animals, and subsequently, animals that received splenocytes from the immunized donors produce a high concentration of circulating antibodies against the specific antigens. The severity of the disease was assessed by evaluating the PV score, evidencing that the DSG1/DSG3 mixed model exhibits the most severe symptoms among those analyzed. Alopecia, erosions, and blistering were observed in the skin of DSG1, DSG3 and DSG1/DSG3 models, while lesions in the mucosa were observed only in DSG3 and DSG1/DSG3 animals. The effectiveness of the corticosteroid Methyl-Prednisolone was evaluated in the DSG1 and DSG1/DSG3 models, that showed only partial responsiveness.
Collapse
Affiliation(s)
- Roberta Lotti
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Claudio Giacinto Atene
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Emma Dorotea Zanfi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Matteo Bertesi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carlo Pincelli
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|