1
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
2
|
Shen J, He Y, Li S, Chen H. Crosstalk of methylation and tamoxifen in breast cancer (Review). Mol Med Rep 2024; 30:180. [PMID: 39129315 PMCID: PMC11338244 DOI: 10.3892/mmr.2024.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Tamoxifen is a widely used anti‑estrogen drug in the endocrine therapy of breast cancer (BC). It blocks estrogen signaling by competitively binding to estrogen receptor α (ERα), thereby inhibiting the growth of BC cells. However, with the long‑term application of tamoxifen, a subset of patients with BC have shown resistance to tamoxifen, which leads to low overall survival and progression‑free survival. The molecular mechanism of resistance is mainly due to downregulation of ERα expression and abnormal activation of the PI3K/AKT/mTOR signaling pathway. Moreover, the downregulation of targeted gene expression mediated by DNA methylation is an important regulatory mode to control protein expression. In the present review, methylation and tamoxifen are briefly introduced, followed by a focus on the effect of methylation on tamoxifen resistance and sensitivity. Finally, the clinical application of methylation for tamoxifen is described, including its use as a prognostic indicator. Finally, it is hypothesized that when methylation is used in combination with tamoxifen, it could recover the resistance of tamoxifen.
Collapse
Affiliation(s)
- Jin Shen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Yan He
- Department of Neurology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Shengpeng Li
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Huimin Chen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
3
|
Yuan Y, Hao L, Huang JS, Zhao FY, Ju YH, Wang JM, Zhang T, Li BQ, Yu ZW. Promotion of stem cell-like phenotype of lung adenocarcinoma by FAM83A via stabilization of ErbB2. Cell Death Dis 2024; 15:460. [PMID: 38942760 PMCID: PMC11213963 DOI: 10.1038/s41419-024-06853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Lung cancer stands as the leading cause of mortality among all types of tumors, with over 40% of cases being lung adenocarcinoma (LUAD). Family with sequence similarity 83 member A (FAM83A) emerges as a notable focus due to its frequent overexpression in LUAD. Despite this, the precise role of FAM83A remains elusive. This study addresses this gap by unveiling the crucial involvement of FAM83A in maintaining the cancer stem cell-like (CSC-like) phenotype of LUAD. Through a global proteomics analysis, the study identifies human epidermal growth factor receptor 2 (HER2 or ErbB2) as a crucial target of FAM83A. Mechanistically, FAM83A facilitated ErbB2 expression at the posttranslational modification level via the E3 ubiquitin ligase STUB1 (STIP1-homologous U-Box containing protein 1). More importantly, the interaction between FAM83A and ErbB2 at Arg241 promotes calcineurin (CALN)-mediated dephosphorylation of ErbB2, followed by inhibition of STUB1-mediated ubiquitin-proteasomal ErbB2 degradation. The maintenance of the CSC-like phenotype by FAM83A, achieved through the posttranslational regulation of ErbB2, offers valuable insights for identifying potential therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Ye Yuan
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Liang Hao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110026, China
| | - Jing-Shan Huang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
- Department of Thoracic Surgery, the Shengjing Hospital, China Medical University, Shenyang, 110001, China
| | - Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Ying-Hua Ju
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, Shenyang, 110001, China
| | - Ting Zhang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Bai-Qiang Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Zhan-Wu Yu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| |
Collapse
|
4
|
Zeng M, Wu B, Wei W, Jiang Z, Li P, Quan Y, Hu X. Disulfiram: A novel repurposed drug for cancer therapy. Chin Med J (Engl) 2024; 137:1389-1398. [PMID: 38275022 PMCID: PMC11188872 DOI: 10.1097/cm9.0000000000002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/27/2024] Open
Abstract
ABSTRACT Cancer is a major global health issue. Effective therapeutic strategies can prolong patients' survival and reduce the costs of treatment. Drug repurposing, which identifies new therapeutic uses for approved drugs, is a promising approach with the advantages of reducing research costs, shortening development time, and increasing efficiency and safety. Disulfiram (DSF), a Food and Drug Administration (FDA)-approved drug used to treat chronic alcoholism, has a great potential as an anticancer drug by targeting diverse human malignancies. Several studies show the antitumor effects of DSF, particularly the combination of DSF and copper (DSF/Cu), on a wide range of cancers such as glioblastoma (GBM), breast cancer, liver cancer, pancreatic cancer, and melanoma. In this review, we summarize the antitumor mechanisms of DSF/Cu, including induction of intracellular reactive oxygen species (ROS) and various cell death signaling pathways, and inhibition of proteasome activity, as well as inhibition of nuclear factor-kappa B (NF-κB) signaling. Furthermore, we highlight the ability of DSF/Cu to target cancer stem cells (CSCs), which provides a new approach to prevent tumor recurrence and metastasis. Strikingly, DSF/Cu inhibits several molecular targets associated with drug resistance, and therefore it is becoming a novel option to increase the sensitivity of chemo-resistant and radio-resistant patients. Studies of DSF/Cu may shed light on its improved application to clinical tumor treatment.
Collapse
Affiliation(s)
- Min Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Baibei Wu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenjie Wei
- Institute of Biochemistry of Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zihan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peiqiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuanting Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaobo Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Vicente-Dueñas C, Sánchez-García I, Brown G. Editorial: Special Issue "Stem Cell Biology and Cancer". Int J Mol Sci 2023; 24:11533. [PMID: 37511301 PMCID: PMC10380406 DOI: 10.3390/ijms241411533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer stem cells (CSCs) are now well-established as key players in tumor initiation, progression, and therapy resistance [...].
Collapse
Affiliation(s)
- Carolina Vicente-Dueñas
- Institute for Biomedical Research of Salamanca (IBSAL), Department of Pediatrics, Hospital Universitario de Salamanca, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Islam MR, Rahman MM, Dhar PS, Nowrin FT, Sultana N, Akter M, Rauf A, Khalil AA, Gianoncelli A, Ribaudo G. The Role of Natural and Semi-Synthetic Compounds in Ovarian Cancer: Updates on Mechanisms of Action, Current Trends and Perspectives. Molecules 2023; 28:2070. [PMID: 36903316 PMCID: PMC10004182 DOI: 10.3390/molecules28052070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
8
|
Telang NT. Stem Cell Models for Breast and Colon Cancer: Experimental Approach for Drug Discovery. Int J Mol Sci 2022; 23:ijms23169223. [PMID: 36012489 PMCID: PMC9409032 DOI: 10.3390/ijms23169223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The progression of the early stages of female breast and colon cancer to metastatic disease represents a major cause of mortality in women. Multi-drug chemotherapy and/or pathway selective targeted therapy are notable for their off-target effects and are associated with spontaneous and/or acquired chemotherapy resistance and the emergence of premalignant chemo-resistant cancer-initiating stem cells. The stem cell populations are responsible for the evolution of therapy-resistant metastatic disease. These limitations emphasize an unmet need to develop reliable drug-resistant cancer stem cell models as novel experimental approaches for therapeutic alternatives in drug discovery platforms. Drug-resistant stem cell models for breast and colon cancer subtypes exhibit progressive growth in the presence of cytotoxic chemo-endocrine therapeutics. The resistant cells exhibit upregulated expressions of stem cell-selective cellular and molecular markers. Dietary phytochemicals, nutritional herbs and their constituent bioactive compounds have documented growth inhibitory efficacy for cancer stem cells. The mechanistic leads for the stem cell-targeted efficacy of naturally occurring agents validates the present experimental approaches for new drug discovery as therapeutic alternatives for therapy-resistant breast and colon cancer. The present review provides a systematic discussion of published evidence on (i) conventional/targeted therapy for breast and colon cancer, (ii) cellular and molecular characterization of stem cell models and (iii) validation of the stem cell models as an experimental approach for novel drug discovery of therapeutic alternatives for therapy-resistant cancers.
Collapse
Affiliation(s)
- Nitin T Telang
- Cancer Prevention Research Program, Palindrome Liaisons Consultants, Montvale, NJ 07645-1559, USA
| |
Collapse
|