1
|
Perrotta I. Live and let die: analyzing ultrastructural features in cell death. Ultrastruct Pathol 2025; 49:1-19. [PMID: 39552095 DOI: 10.1080/01913123.2024.2428703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Cell death is an important process that supports morphogenesis during development and tissue homeostasis during adult life by removing damaged or unwanted cells and its dysregulation is associated with numerous disease states. There are different pathways through which a cell can undergo cell death, each relying on peculiar molecular mechanisms and morpho-ultrastructural features. To date, however, while molecular and genetic approaches have been successfully integrated into the field, cell death studies rarely incorporate ultrastructural data from electron microscopy. This review article reports a gallery of original transmission electron microscopy images to describe the ultrastructural features of cells undergoing different types of cell death programs, including necrosis, apoptosis, autophagy, mitotic catastrophe, ferroptosis, methuosis, and paraptosis. TEM has been an important technology in cell biology for well over 50 years and still continues to offer significant advantages in the area of cell death research. TEM allows detailed characterization of the ultrastructural changes within the cell, such as the alteration of organelles and subcellular structures, the nuclear reorganization, and the loss of membrane integrity that enable a distinction between the different forms of cell death based on morphological criteria. Possible pitfalls are also described.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2) Transmission Electron Microscopy Laboratory, University of Calabria, Cosenza, Italy
| |
Collapse
|
2
|
Lotfi MS, Rassouli FB. Navigating the complexities of cell death: Insights into accidental and programmed cell death. Tissue Cell 2024; 91:102586. [PMID: 39426124 DOI: 10.1016/j.tice.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cell death is a critical biological phenomenon that can be categorized into accidental cell death (ACD) and programmed cell death (PCD), each exhibiting distinct signaling, mechanistic and morphological characteristics. This paper provides a comprehensive overview of seven types of ACD, including coagulative, liquefactive, caseous, fat, fibrinoid, gangrenous and secondary necrosis, discussing their pathological implications in conditions such as ischemia and inflammation. Additionally, we review eighteen forms of PCD, encompassing autophagy, apoptosis, necroptosis, pyroptosis, paraptosis, ferroptosis, anoikis, entosis, NETosis, eryptosis, parthanatos, mitoptosis, and newly recognized types such as methuosis, autosis, alkaliptosis, oxeiptosis, cuprotosis and erebosis. The implications of these cell death modalities for cellular processes, development, and disease-particularly in the context of neoplastic and neurodegenerative disorders-are also covered. Furthermore, we explore the crosstalk between various forms of PCD, emphasizing how apoptotic mechanisms can influence pathways like necroptosis and pyroptosis. Understanding this interplay is crucial for elucidating cellular responses to stress, as well as for its potential relevance in clinical applications and therapeutic strategies. Future research should focus on clarifying the molecular mechanisms that govern different forms of PCD and their interactions.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Liu X, Jin Y, Zhang M, Jin Y, Cao J, Dong H, Fu X, Jin CY. The RIP3 activator C8 regulates the autophagy flux mediated by p62 and promotes the immunogenic form of cell death in human gastric cancer cells. Bioorg Chem 2024; 153:107937. [PMID: 39520785 DOI: 10.1016/j.bioorg.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
There has been growing interest in investigating anti-tumor drugs that not only kill cancer cells but also stimulate the immune system, among them, necroptosis is a classical immunogenic form of cell death. In our study, we discovered that by targeting RIP3, Jaspine B derivative C8 induces necroptosis and initiates cell death, and this effect can be reversed by knockout of RIP3. Furthermore, RIP3 initiates autophagy and binds to p62 to inhibit autophagic flux. Additionally, the autophagy process mediated by RIP3 activates the Nrf2 signaling pathway via the formation of the p62/Keap1 complex. Early autophagy inhibitors enhance necroptosis by impending the accumulation of p62 and restraining the activation of Nrf2, whereas late autophagy inhibitors partially prevent C8-induced necroptosis. Notably, the immunogenic form of cell death induced by C8 did not affect tumor immunity. Overall, C8 functions as a RIP3 activator to suppress the development of gastric cancer. Upon activation, RIP3 regulates p62-mediated autophagic flux and the Nrf2 signaling pathway through the RIP3/p62/Keap1 axis.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Yubin Jin
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Mengli Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Yanhe Jin
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Jie Cao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Hangqi Dong
- Hanan Center for Drug Evaluation and Inspection, Henan Center for Vaccine Inspection, 127 Huayuan Road, Zhengzhou, Henan Province 450008, China
| | - Xiangjing Fu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Cheng-Yun Jin
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
4
|
Rajasekharan SK, Ravichandran V, Boya BR, Jayachandran A, Lee J. Repurposing methuosis-inducing anticancer drugs for anthelmintic therapy. PLoS Pathog 2024; 20:e1012475. [PMID: 39235992 PMCID: PMC11376546 DOI: 10.1371/journal.ppat.1012475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Drug-resistant parasitic nematodes pose a grave threat to plants, animals, and humans. An innovative paradigm for treating parasitic nematodes is emphasized in this opinion. This approach relies on repurposing methuosis (a death characterized by accumulation of large vacuoles) inducing anticancer drugs as anthelmintics. We review drugs/chemicals that have shown to kill nematodes or cancerous cells by inducing multiple vacuoles that eventually coalesce and rupture. This perspective additionally offers a succinct summary on Structure-Activity Relationship (SAR) of methuosis-inducing small molecules. This strategy holds promise for the development of broad-spectrum anthelmintics, shedding light on shared molecular mechanisms between cancer and nematodes in response to these inducers, thereby potentially transforming both therapeutic domains.
Collapse
Affiliation(s)
- Satish Kumar Rajasekharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Vinothkannan Ravichandran
- Centre for Drug Discovery and Development (CD3), Amity Institute of Biotechnology, Amity University Maharashtra, Bhatan, Panvel, Mumbai, Maharashtra, India
| | - Bharath Reddy Boya
- School of Chemical Engineering, Yeungnum University, Gyeongsan, Republic of Korea
| | - Anirudh Jayachandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnum University, Gyeongsan, Republic of Korea
| |
Collapse
|
5
|
Wang M, Dai B, Liu Q, Zhang X. Prognostic and immunological implications of heterogeneous cell death patterns in prostate cancer. Cancer Cell Int 2024; 24:297. [PMID: 39182081 PMCID: PMC11344416 DOI: 10.1186/s12935-024-03462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes. MATERIALS AND METHODS We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model. RESULTS Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels. CONCLUSION In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Bangshun Dai
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Qiushi Liu
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Xiansheng Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
6
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Kim D, Min D, Kim J, Kim MJ, Seo Y, Jung BH, Kwon SH, Ro H, Lee S, Sa JK, Lee JY. Nutlin-3a induces KRAS mutant/p53 wild type lung cancer specific methuosis-like cell death that is dependent on GFPT2. J Exp Clin Cancer Res 2023; 42:338. [PMID: 38093368 PMCID: PMC10720203 DOI: 10.1186/s13046-023-02922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Oncogenic KRAS mutation, the most frequent mutation in non-small cell lung cancer (NSCLC), is an aggressiveness risk factor and leads to the metabolic reprogramming of cancer cells by promoting glucose, glutamine, and fatty acid absorption and glycolysis. Lately, sotorasib was approved by the FDA as a first-in-class KRAS-G12C inhibitor. However, sotorasib still has a derivative barrier, which is not effective for other KRAS mutation types, except for G12C. Additionally, resistance to sotorasib is likely to develop, demanding the need for alternative therapeutic strategies. METHODS KRAS mutant, and wildtype NSCLC cells were used in vitro cell analyses. Cell viability, proliferation, and death were measured by MTT, cell counting, colony analyses, and annexin V staining for FACS. Cell tracker dyes were used to investigate cell morphology, which was examined by holotomograpy, and confocal microscopes. RNA sequencing was performed to identify key target molecule or pathway, which was confirmed by qRT-PCR, western blotting, and metabolite analyses by UHPLC-MS/MS. Zebrafish and mouse xenograft model were used for in vivo analysis. RESULTS In this study, we found that nutlin-3a, an MDM2 antagonist, inhibited the KRAS-PI3K/Akt-mTOR pathway and disrupted the fusion of both autophagosomes and macropinosomes with lysosomes. This further elucidated non-apoptotic and catastrophic macropinocytosis associated methuosis-like cell death, which was found to be dependent on GFPT2 of the hexosamine biosynthetic pathway, specifically in KRAS mutant /p53 wild type NSCLC cells. CONCLUSION These results indicate the potential of nutlin-3a as an alternative agent for treating KRAS mutant/p53 wild type NSCLC cells.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Dongwha Min
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Yerim Seo
- Center for Advanced Biomolecular Recognition, Korea Instiute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Instiute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul Center, Seoul, South Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Seoee Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Ji-Yun Lee
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea.
| |
Collapse
|
8
|
Ye T, Shan P, Zhang H. Progress in the discovery and development of small molecule methuosis inducers. RSC Med Chem 2023; 14:1400-1409. [PMID: 37593581 PMCID: PMC10429883 DOI: 10.1039/d3md00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
Current cancer chemotherapies rely mainly on the induction of apoptosis of tumor cells, while drug resistance arising from conventional chemicals has always been a big challenge. In recent years, more and more new types of cell deaths including methuosis have been extensively investigated and recognized as potential alternative targets for future cancer treatment. Methuosis is usually caused by excessive accumulation of macropinosomes owing to ectopic activation of macropinocytosis, which can be triggered by external stimuli such as chemical agents. Increasing reports demonstrate that many small molecule compounds could specifically induce methuosis in tumor cells while showing little or no effect on normal cells. This finding raises the possibility of targeting tumor cell methuosis as an effective strategy for the prevention of cancer. Based on fast-growing studies lately, we herein provide a comprehensive overview on the overall research progress of small molecule methuosis inducers. Promisingly, previous efforts and experiences will facilitate the development of next-generation anticancer therapies.
Collapse
Affiliation(s)
- Tao Ye
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao Shandong 266031 P.R. China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|