1
|
Stavchansky VV, Yuzhakov VV, Sevan'kaeva LE, Fomina NK, Koretskaya AE, Denisova AE, Mozgovoy IV, Gubsky LV, Filippenkov IB, Myasoedov NF, Limborska SA, Dergunova LV. Melanocortin Derivatives Induced Vascularization and Neuroglial Proliferation in the Rat Brain under Conditions of Cerebral Ischemia. Curr Issues Mol Biol 2024; 46:2071-2092. [PMID: 38534749 DOI: 10.3390/cimb46030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Stroke remains the second leading cause of death worldwide. The development of new therapeutic agents focused on restoring vascular function and neuroprotection of viable tissues is required. In this study the neuroprotective activity of melanocortin-like ACTH(4-7)PGP and ACTH(6-9)PGP peptides was investigated in rat brain at 24 h after transient middle cerebral artery occlusion (tMCAO). The severity of ischemic damage, changes in the proliferative activity of neuroglial cells and vascularization of rat brain tissue were analyzed. The administration of peptides resulted in a significant increase in the volume density of neurons in the perifocal zone of infarction compared to rats subjected to ischemia and receiving saline. Immunohistochemical analysis of the proliferative activity of neuroglia cells using PCNA antibodies showed a significant increase in the number of proliferating cells in the penumbra and in the intact cerebral cortex of rats receiving peptide treatment. The effect of peptides on vascularization was examined using CD31 antibodies under tMCAO conditions, revealing a significant increase in the volume density of vessels and their sizes in the penumbra after administration of ACTH(4-7)PGP and ACTH(6-9)PGP. These findings confirm the neuroprotective effect of peptides due to the activation of neuroglia proliferation and the enhancement of collateral blood flow.
Collapse
Affiliation(s)
- Vasily V Stavchansky
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Vadim V Yuzhakov
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Larisa E Sevan'kaeva
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Natalia K Fomina
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Anastasia E Koretskaya
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Alina E Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan V Mozgovoy
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Leonid V Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan B Filippenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Nikolay F Myasoedov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Svetlana A Limborska
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Lyudmila V Dergunova
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
2
|
Shpetko YY, Filippenkov IB, Denisova AE, Stavchansky VV, Gubsky LV, Limborska SA, Dergunova LV. Isoflurane Anesthesia's Impact on Gene Expression Patterns of Rat Brains in an Ischemic Stroke Model. Genes (Basel) 2023; 14:1448. [PMID: 37510352 PMCID: PMC10379230 DOI: 10.3390/genes14071448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) is one of the most severe brain diseases. Animal models with anesthesia are actively used to study stroke genomics and pathogenesis. However, the anesthesia-related gene expression patterns of ischemic rat brains remain poorly understood. In this study, we sought to elucidate the impact of isoflurane (ISO) anesthesia on the extent of ischemic brain damage and gene expression changes associated with stroke. METHODS We used the transient middle cerebral artery occlusion (tMCAO) model under long-term and short-term ISO anesthesia, magnetic resonance imaging (MRI), RNA sequencing, and bioinformatics. RESULTS We revealed that the volume of cerebral damage at 24 h after tMCAO was inversely proportional to the duration of ISO anesthesia. Then, we revealed hundreds of overlapping ischemia-related differentially expressed genes (DEGs) with a cutoff of >1.5; Padj < 0.05, and 694 and 1557 DEGs only under long-term and short-term anesthesia, respectively, using sham-operated controls. Concomitantly, unique DEGs identified under short-term anesthesia were mainly associated with neurosignaling systems, whereas unique DEGs identified under long-term anesthesia were predominantly related to the inflammatory response. CONCLUSIONS We were able to determine the effects of the duration of anesthesia using isoflurane on the transcriptomes in the brains of rats at 24 h after tMCAO. Thus, specific genome responses may be useful in developing potential approaches to reduce damaged areas after cerebral ischemia and neuroprotection.
Collapse
Affiliation(s)
- Yana Y Shpetko
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Ivan B Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Alina E Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Vasily V Stavchansky
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Leonid V Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
- Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, Moscow 117997, Russia
| | - Svetlana A Limborska
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Lyudmila V Dergunova
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
3
|
Filippenkov IB, Remizova JA, Stavchansky VV, Denisova AE, Gubsky LV, Myasoedov NF, Limborska SA, Dergunova LV. Synthetic Adrenocorticotropic Peptides Modulate the Expression Pattern of Immune Genes in Rat Brain following the Early Post-Stroke Period. Genes (Basel) 2023; 14:1382. [PMID: 37510287 PMCID: PMC10379992 DOI: 10.3390/genes14071382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is an acute local decrease in cerebral blood flow due to a thrombus or embolus. Of particular importance is the study of the genetic systems that determine the mechanisms underlying the formation and maintenance of a therapeutic window (a time interval of up to 6 h after a stroke) when effective treatment can be provided. Here, we used a transient middle cerebral artery occlusion (tMCAO) model in rats to study two synthetic derivatives of adrenocorticotropic hormone (ACTH). The first was ACTH(4-7)PGP, which is known as Semax. It is actively used as a neuroprotective drug. The second was the ACTH(6-9)PGP peptide, which is elucidated as a prospective agent only. Using RNA-Seq analysis, we revealed hundreds of ischemia-related differentially expressed genes (DEGs), as well as 131 and 322 DEGs related to the first and second peptide at 4.5 h after tMCAO, respectively, in dorsolateral areas of the frontal cortex of rats. Furthermore, we showed that both Semax and ACTH(6-9)PGP can partially prevent changes in the immune- and neurosignaling-related gene expression profiles disturbed by the action of ischemia at 4.5 h after tMCAO. However, their different actions with regard to predominantly immune-related genes were also revealed. This study gives insight into how the transcriptome depends on the variation in the structure of the related peptides, and it is valuable from the standpoint of the development of measures for early post-stroke therapy.
Collapse
Affiliation(s)
- Ivan B Filippenkov
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Julia A Remizova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Vasily V Stavchansky
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Alina E Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Leonid V Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
- Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, Moscow 117997, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Svetlana A Limborska
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Lyudmila V Dergunova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
4
|
Akhter N, Ahmad S. Molecular Signaling in Stroke. Int J Mol Sci 2023; 24:ijms24065975. [PMID: 36983049 PMCID: PMC10056711 DOI: 10.3390/ijms24065975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
We have reached the end of the Special Issue on Molecular Signaling in Stroke in IJMS [...].
Collapse
Affiliation(s)
- Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Saif Ahmad
- Department of Neurosurgery and Translational Neuroscience, Barrow Neurological Institute, SJHMC, Dignity Health, Phoenix, AZ 85013, USA
| |
Collapse
|
5
|
Filippenkov IB, Remizova JA, Denisova AE, Stavchansky VV, Golovina KD, Gubsky LV, Limborska SA, Dergunova LV. Differential gene expression in the contralateral hemisphere of the rat brain after focal ischemia. Sci Rep 2023; 13:573. [PMID: 36631528 PMCID: PMC9834327 DOI: 10.1038/s41598-023-27663-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Ischemic stroke is one of the most severe polygenic brain diseases. Here, we performed further functional genetic analysis of the processes occurring in the contralateral hemisphere (CH) after ischemia-reperfusion injury in rat brain. Comparison of RNA sequencing data for subcortical samples from the ipsilateral hemisphere (IH) and CH after 90 min of transient middle cerebral artery occlusion (tMCAO) and corresponding sham-operated (SO) controls showed four groups of genes that were associated with ischemic processes in rat brain at 24 h after tMCAO. Among them, 2672 genes were differentially expressed genes (DEGs) for IH but non-DEGs for CH, 34 genes were DEGs for CH but non-DEGs for IH, and 114 genes had codirected changes in expression in both hemispheres. The remaining 16 genes exhibited opposite changes at the mRNA level in the two brain hemispheres after tMCAO. These findings suggest that the ischemic process caused by a focal ischemia induces complex bilateral reactions at the transcriptome level in the rat brain. We believe that specific genome responses in the CH and IH may provide a useful model for the study of the potential for brain repair after stroke.
Collapse
Affiliation(s)
- Ivan B. Filippenkov
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Julia A. Remizova
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Alina E. Denisova
- grid.78028.350000 0000 9559 0613Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia
| | - Vasily V. Stavchansky
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ksenia D. Golovina
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Leonid V. Gubsky
- grid.78028.350000 0000 9559 0613Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia ,Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, 117997 Moscow, Russia
| | - Svetlana A. Limborska
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Lyudmila V. Dergunova
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|