1
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Zhao Z, Zhang Y, Meng C, Xie X, Cui W, Zuo K. Tissue-Penetrating Ultrasound-Triggered Hydrogel for Promoting Microvascular Network Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401368. [PMID: 38600702 PMCID: PMC11187930 DOI: 10.1002/advs.202401368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Indexed: 04/12/2024]
Abstract
The microvascular network plays an important role in providing nutrients to the injured tissue and exchanging various metabolites. However, how to achieve efficient penetration of the injured tissue is an important bottleneck restricting the reconstruction of microvascular network. Herein, the hydrogel precursor solution can efficiently penetrate the damaged tissue area, and ultrasound triggers the release of thrombin from liposomes in the solution to hydrolyze fibrinogen, forming a fibrin solid hydrogel network in situ with calcium ions and transglutaminase as catalysts, effectively solving the penetration impedance bottleneck of damaged tissues and ultimately significantly promoting the formation of microvascular networks within tissues. First, the fibrinogen complex solution is effectively permeated into the injured tissue. Second, ultrasound triggered the release of calcium ions and thrombin, activates transglutaminase, and hydrolyzes fibrinogen. Third, fibrin monomers are catalyzed to form fibrin hydrogels in situ in the damaged tissue area. In vitro studies have shown that the fibrinogen complex solution effectively penetrated the artificial bone tissue within 15 s after ultrasonic triggering, and formed a hydrogel after continuous triggering for 30 s. Overall, this innovative strategy effectively solved the problem of penetration resistance of ultrasound-triggered hydrogels in the injured tissues, and finally activates in situ microvascular networks regeneration.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Interventional and Vascular SurgeryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072China
| | - Yin Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Chen Meng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Xiaoyun Xie
- Department of Interventional and Vascular SurgeryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Keqiang Zuo
- Department of Interventional and Vascular SurgeryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072China
| |
Collapse
|
3
|
Clark CC, Yoo KM, Sivakumar H, Strumpf K, Laxton AW, Tatter SB, Strowd RE, Skardal A. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Biomed Mater 2022; 18. [PMID: 36332268 DOI: 10.1088/1748-605x/aca05d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Organoids, and in particular patient-derived organoids, have emerged as crucial tools for cancer research. Our organoid platform, which has supported patient-derived tumor organoids (PTOs) from a variety of tumor types, has been based on the use of hyaluronic acid (HA) and collagen, or gelatin, hydrogel bioinks. One hurdle to high throughput PTO biofabrication is that as high-throughput multi-well plates, bioprinted volumes have increased risk of contacting the sides of wells. When this happens, surface tension causes bioinks to fall flat, resulting in 2D cultures. To address this problem, we developed an organoid immersion bioprinting method-inspired by the FRESH printing method-in which organoids are bioprinted into support baths in well plates. The bath-in this case an HA solution-shields organoids from the well walls, preventing deformation. Here we describe an improvement to our approach, based on rheological assessment of previous gelatin baths versus newer HA support baths, combined with morphological assessment of immersion bioprinted organoids. HA print baths enabled more consistent organoid volumes and geometries. We optimized the printing parameters of this approach using a cell line. Finally, we deployed our optimized immersion bioprinting approach into a drug screening application, using PTOs derived from glioma biospecimens, and a lung adenocarcinoma brain metastasis. In these studies, we showed a general dose dependent response to an experimental p53 activator compound and temozolomide (TMZ), the drug most commonly given to brain tumor patients. Responses to the p53 activator compound were effective across all PTO sets, while TMZ responses were observed, but less pronounced, potentially explained by genetic and epigenetic states of the originating tumors. The studies presented herein showcase a bioprinting methodology that we hope can be used in increased throughput settings to help automate biofabrication of PTOs for drug development-based screening studies and precision medicine applications.
Collapse
Affiliation(s)
- Casey C Clark
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101, United States of America
| | - Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, OH 43210, United States of America
| | - Kristina Strumpf
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States of America
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States of America
| | - Roy E Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States of America.,Department of Neurology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, OH 43210, United States of America.,The Ohio State University and Arthur G James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|