1
|
Lu Y, Wang T, Yu B, Xia K, Guo J, Liu Y, Ma X, Zhang L, Zou J, Chen Z, Zhou J, Qiu T. Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury. Chin Med J (Engl) 2024:00029330-990000000-01373. [PMID: 39719693 DOI: 10.1097/cm9.0000000000003309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 12/26/2024] Open
Abstract
ABSTRACT Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Collapse
Affiliation(s)
- Yifan Lu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
2
|
Zhang Y, Xuan X, Ye D, Liu D, Song Y, Gao F, Lu S. The Role of the AIM2 Gene in Obesity-Related Glucose and Lipid Metabolic Disorders: A Recent Update. Diabetes Metab Syndr Obes 2024; 17:3903-3916. [PMID: 39465122 PMCID: PMC11512477 DOI: 10.2147/dmso.s488978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Absent in melanoma 2 (AIM2) is a protein encoded by the AIM2 gene located on human chromosomes, AIM2 can recognize and bind to double stranded DNA (dsDNA), leading to the assembly of the AIM2 inflammasome. The AIM2 inflammasome plays important proinflammation role in many diseases, and can induce pyroptotic cell death. It has also been closely linked to the development and progression of metabolic diseases and can be activated in obesity, diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this article, we mainly review the role of AIM2 in glucose metabolism, especially in obesity-related disorders of glucose and lipid metabolism, and provide insights to better understand the role of AIM2 in the pathogenesis, and clinical treatment of metabolic disease.
Collapse
Affiliation(s)
- Yongjiao Zhang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Xiaolei Xuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Diwen Ye
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Dong Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Yufan Song
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Fei Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Sumei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Yang H, Shao ZH, Jin X, Chen JW. The critical role of P2XR/PGC-1α signalling pathway in hypoxia-mediated pyroptosis and M1/M2 phenotypic differentiation of mouse microglia. Eur J Neurosci 2024; 60:3629-3642. [PMID: 38697919 DOI: 10.1111/ejn.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.
Collapse
Affiliation(s)
- Hao Yang
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Zhen-Hua Shao
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Xian Jin
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Jia-Wei Chen
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Lin J, Wang J, Fang J, Li M, Xu S, Little PJ, Zhang D, Liu Z. The cytoplasmic sensor, the AIM2 inflammasome: A precise therapeutic target in vascular and metabolic diseases. Br J Pharmacol 2024; 181:1695-1719. [PMID: 38528718 DOI: 10.1111/bph.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Cardio-cerebrovascular diseases encompass pathological changes in the heart, brain and vascular system, which pose a great threat to health and well-being worldwide. Moreover, metabolic diseases contribute to and exacerbate the impact of vascular diseases. Inflammation is a complex process that protects against noxious stimuli but is also dysregulated in numerous so-called inflammatory diseases, one of which is atherosclerosis. Inflammation involves multiple organ systems and a complex cascade of molecular and cellular events. Numerous studies have shown that inflammation plays a vital role in cardio-cerebrovascular diseases and metabolic diseases. The absent in melanoma 2 (AIM2) inflammasome detects and is subsequently activated by double-stranded DNA in damaged cells and pathogens. With the assistance of the mature effector molecule caspase-1, the AIM2 inflammasome performs crucial biological functions that underpin its involvement in cardio-cerebrovascular diseases and related metabolic diseases: The production of interleukin-1 beta (IL-1β), interleukin-18 (IL-18) and N-terminal pore-forming Gasdermin D fragment (GSDMD-N) mediates a series of inflammatory responses and programmed cell death (pyroptosis and PANoptosis). Currently, several agents have been reported to inhibit the activity of the AIM2 inflammasome and have the potential to be evaluated for use in clinical settings. In this review, we systemically elucidate the assembly, biological functions, regulation and mechanisms of the AIM2 inflammasome in cardio-cerebrovascular diseases and related metabolic diseases and outline the inhibitory agents of the AIM2 inflammasome as potential therapeutic drugs.
Collapse
Affiliation(s)
- Jiuguo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jiaojiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jian Fang
- Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Meihang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Song J, Qin BF, Feng QY, Zhang JJ, Zhao GY, Luo Z, Sun HM. Albiflorin ameliorates thioacetamide-induced hepatic fibrosis: The involvement of NURR1-mediated inflammatory signaling cascades in hepatic stellate cells activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116334. [PMID: 38626607 DOI: 10.1016/j.ecoenv.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-β), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.
Collapse
Affiliation(s)
- Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Jin-Jin Zhang
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Gui-Yun Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Zheng Luo
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
7
|
Li L, Kong L, Xu S, Wang C, Gu J, Luo H, Meng Q. FXR overexpression prevents hepatic steatosis through inhibiting AIM2 inflammasome activation in alcoholic liver disease. Hepatol Int 2024; 18:188-205. [PMID: 38183609 DOI: 10.1007/s12072-023-10621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND PURPOSE Alcoholic liver disease (ALD), a metabolic liver disease caused by excessive alcohol consumption, has attracted increasing attention due to its high prevalence and mortality. Up to date, there is no effective and feasible treatment method for ALD. This study was to investigate whether Farnesoid X receptor (FXR, NR1H4) can alleviate ALD and whether this effect is mediated by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. METHODS The difference in FXR expression between normal subjects and ALD patients was analyzed using the Gene Expression Omnibus (GEO) database. Lieber-DeCarli liquid diet with 5% ethanol (v/v) (EtOH) was adopted to establish the mouse ALD model. Liver histopathological changes and the accumulation of lipid droplets were assessed by H&E and Oil Red O staining. Quantitative real-time PCR, Western blotting analysis and immunofluorescence staining were utilized to evaluate the expression levels of related genes and proteins. DCFH-DA staining was adopted to visualize reactive oxidative species (ROS). RESULTS FXR was distinctly downregulated in liver tissues of patients with steatosis compared to normal livers using the GEO database, and in ethanol-induced AML-12 cellular steatosis model. FXR overexpression ameliorated hepatic lipid metabolism disorder and steatosis induced by ethanol by inhibiting the expression of genes involved in lipid synthesis and inducing the expression of genes responsible for lipid metabolism. Besides, FXR overexpression inhibited ethanol-induced AIM2 inflammasome activation and alleviated oxidative stress and ROS production during ethanol-induced hepatic steatosis. However, when FXR was knocked down, the results were completely opposite. CONCLUSIONS FXR attenuated lipid metabolism disorders and lipid degeneration in alcohol-caused liver injury and alleviated oxidative stress and inflammation by inhibiting AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Lin Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Shuai Xu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
8
|
Xu S, Kong L, Li L, Wang C, Gu J, Luo H, Meng Q. Farnesoid X receptor overexpression prevents hepatic steatosis through inhibiting AIM2 inflammasome activation in nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166930. [PMID: 37918680 DOI: 10.1016/j.bbadis.2023.166930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Oxidative stress-mediated activation of inflammasome has a significant effect on the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Farnesoid X receptor (NR1H4, FXR) has been implicated in biological function and many diseases, including NAFLD. The regulatory effect of FXR on oxidative stress and whether this process is related with the activation of absent melanoma 2 (AIM2) inflammasome in NAFLD remain unclear. In the present research, we confirmed that FXR in the livers of steatosis patients is significantly reduced compared with normal liver tissue by using the Gene Expression Omnibus (GEO) database and a palmitic acid (PA) - mediated steatosis model in AML-12 cells. Under the premise of ensuring the same food intake as the control group, overexpression of FXR in mice attenuated HFD-mediated weight gain and liver steatosis, facilitated lipid metabolism, improved fatty acid β-oxidation, lipolysis, and reduced fatty acid synthesis and intake, which also inhibited the activation of AIM2 inflammasome. Overexpression of FXR alleviated PA-induced triglyceride (TG) accumulation, imbalance of lipid homeostasis, and the activation of AIM2 inflammasome in hepatic steatosis cells, while FXR knockdown appeared the opposite effects. FXR overexpression suppressed PA- and HFD-induced oxidative stress, but FXR siRNA demonstrated the opposite influence. The decreased ROS generation may be the reason why FXR weakens AIM2 activation when a fatty acid overload occurs. In conclusion, our results confirm that other than regulating lipid homeostasis and blocking NLRP3 inflammasome activation, FXR improves hepatic steatosis by a novel mechanism that inhibits oxidative stress and AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lin Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
Zhou M, Pang F, Liao D, Yang Y, Wang Y, Yang Z, He X, Tang C. Electroacupuncture improves allodynia and central sensitization via modulation of microglial activation associated P2X4R and inflammation in a rat model of migraine. Mol Pain 2024; 20:17448069241258113. [PMID: 38744426 PMCID: PMC11143845 DOI: 10.1177/17448069241258113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Background: Recent studies have demonstrated that activated microglia were involved in the pathogenesis of central sensitization characterized by cutaneous allodynia in migraine. Activation of microglia is accompanied by increased expression of its receptors and release of inflammatory mediators. Acupuncture and its developed electroacupuncture (EA) have been recommended as an alternative therapy for migraine and are widely used for relieving migraine-associated pain. However, it remains rare studies that show whether EA exerts anti-migraine effects via inhibiting microglial activation related to a release of microglial receptors and the inflammatory pathway. Therefore, this study aimed to investigate EA' ability to ameliorate central sensitization via modulation of microglial activation, microglial receptor, and inflammatory response using a rat model of migraine induced by repeated epidural chemical stimulation. Methods: In the present study, a rat model of migraine was established by epidural repeated inflammatory soup (IS) stimulation and treated with EA at Fengchi (GB20) and Yanglingquan (GB34) and acupuncture at sham-acupoints. Pain hypersensitivity was further determined by measuring the mechanical withdrawal threshold using the von-Frey filament. The changes in c-Fos and ionized calcium binding adaptor molecule 1 (Ibal-1) labeled microglia in the trigeminal nucleus caudalis (TNC) were examined by immunflurescence to assess the central sensitization and whether accompanied with microglia activation. In addition, the expression of Ibal-1, microglial purinoceptor P2X4, and its associated inflammatory signaling pathway mediators, including interleukin (IL)-1β, NOD-like receptor protein 3 (NLRP3), and Caspase-1 in the TNC were investigated by western blot and real-time polymerase chain reaction analysis. Results: Allodynia increased of c-Fos, and activated microglia were observed after repeated IS stimulation. EA alleviated the decrease in mechanical withdrawal thresholds, reduced the activation of c-Fos and microglia labeled with Ibal-1, downregulated the level of microglial purinoceptor P2X4, and limited the inflammatory response (NLRP3/Caspase-1/IL-1β signaling pathway) in the TNC of migraine rat model. Conclusions: Our results indicate that the anti-hyperalgesia effects of EA ameliorate central sensitization in IS-induced migraine by regulating microglial activation related to P2X4R and NLRP3/IL-1β inflammatory pathway.
Collapse
Affiliation(s)
- Min Zhou
- Chongqing Traditional Chinese Medicine Hospital, The First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine, Chongqing, China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Fang Pang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Dongmei Liao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yunhao Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ying Wang
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Zhuxin Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xinlu He
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Chenglin Tang
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
10
|
He W, Xu C, Mao D, Zheng Y, Wang N, Wang M, Mao N, Wang T, Li Y. Recent advances in pyroptosis, liver disease, and traditional Chinese medicine: A review. Phytother Res 2023; 37:5473-5494. [PMID: 37622684 DOI: 10.1002/ptr.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.
Collapse
Affiliation(s)
- Wenxing He
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Canli Xu
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yang Zheng
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nan Mao
- Department of Acupuncture-Moxibustion and Tuina, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ting Wang
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanjie Li
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
11
|
Yang HX, Guo FY, Lin YC, Wu YL, Nan JX, Jin CH, Lian LH. Synthesis of and anti-fibrotic effect of pyrazole derivative J-1048: Inhibition of ALK5 as a novel approach to liver fibrosis targeting inflammation. Bioorg Chem 2023; 139:106723. [PMID: 37459824 DOI: 10.1016/j.bioorg.2023.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a worldwide challenge of health issue. Developing effective new drugs for treating liver fibrosis is of great importance. In recent years, chemically synthesized drugs have significant advantages in treating liver fibrosis. Small molecule pyrazole derivatives as activin receptor-like kinase 5 (ALK5) inhibitors have also shown anti-fibrotic and tumor growth inhibitory effects. To develop the candidate with anti-fibrotic effect, we synthesized a novel pyrazole derivative, J-1048. The inhibitory effect of J-1048 on ALK5 and p38α mitogen-activated protein (MAP) kinase activity was assessed by enzymatic assays. We established an in vivo liver fibrosis model by injecting thioacetamide (TAA) into mice and in vitro model of TGF-β stimulated hepatic stellated cells to explore the inhibition mechanisms and therapeutic potential of J-1048 as an ALK5 inhibitor in liver fibrosis. Our data showed that J-1048 inhibited TAA-induced liver fibrosis in mice by explicitly blocking the TGF-β/Smad signaling pathway. Additionally, J-1048 inhibited the production of inflammatory cytokine Interleukin-1β (IL-1β) by inhibiting the purinergic ligand-gated ion channel 7 receptor (P2X7r) -Nucleotide-binding domain-(NOD-)like receptor protein 3 (NLRP3) axis, thereby alleviating liver fibrosis. Our findings demonstrated that a novel small molecule ALK5 inhibitor, J-1048, exhibited strong potential as a clinical therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Fang-Yan Guo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yong-Ce Lin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Cheng-Hua Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
12
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|