1
|
Chen S, Zhi Z, Wong WL, Yuan W, Sun N. Understanding the synergistic sensitization of natural products and antibiotics: An effective strategy to combat MRSA. Eur J Med Chem 2025; 281:117012. [PMID: 39509947 DOI: 10.1016/j.ejmech.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multi-resistant organisms found in hospital-acquired infections and is associated with high morbidity and mortality. The development of new drugs and promising therapeutic strategies against MRSA is thus an urgent request. In recent years, some natural products have been demonstrated to show great potential in improving the efficacy of antibiotics to treat various drug-resistant bacteria, particularly MRSA. In this context, we aimed to analyze systematically from the prior arts that investigated the synergy between natural products and antibiotics against MRSA. These findings not only give us a better understanding on the mechanism of actions but also shed light on the bioactive molecular scaffolds identified from diverse natural products. In the present study, we concentratedly reviewed the studies that utilized natural products to enhance the potency of conventional antibiotics against MRSA in the last decade. The timely information reported herein may give meaningful insights into the molecular design of novel and potent antibacterial agents and/or effective therapeutics to combat MRSA for practical applications.
Collapse
Affiliation(s)
- Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China.
| | - Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China.
| |
Collapse
|
2
|
Ellward GL, Binda ME, Dzurny DI, Bucher MJ, Dees WR, Czyż DM. A Screen of Traditional Chinese Medicinal Plant Extracts Reveals 17 Species with Antimicrobial Properties. Antibiotics (Basel) 2024; 13:1220. [DOI: 10.3390/antibiotics13121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a growing threat that undermines the effectiveness of global healthcare. The Centers for Disease Control and Prevention and the World Health Organization have identified numerous microbial organisms, particularly members of the ESKAPEE pathogens, as critical threats to global health and economic security. Many clinical isolates of these pathogens have become completely resistant to current antibiotics, making treatment nearly impossible. Herbal remedies, such as those found in Traditional Chinese Medicine (TCM), have been practiced for thousands of years and successfully used to treat a wide range of ailments, including infectious diseases. Surprisingly, despite this extensive knowledge of folk medicine, no plant-derived antibacterial drugs are currently approved for clinical use. As such, the objective of this study is to evaluate the antimicrobial properties of extracts derived from TCM plants. Methods: This study explores a comprehensive library comprising 664 extracts from 132 distinct TCM plant species for antimicrobial properties against gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria using liquid and solid in vitro assays. Results: Intriguingly, our results reveal 17 plant species with potent antimicrobial properties effective primarily against gram-positive organisms, including Streptococcus aureus and epidermidis. A literature search revealed that nearly 100 purified compounds from the identified TCM plants were previously isolated and confirmed for their antimicrobial properties, collectively inhibiting 45 different bacterial species. Conclusions: Our results indicate that phytobiotics from the identified plants could serve as potential candidates for novel antimicrobials.
Collapse
Affiliation(s)
- Garrett L. Ellward
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Macie E. Binda
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Dominika I. Dzurny
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Michael J. Bucher
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Wren R. Dees
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M. Czyż
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Wang P, Zeng Y, Liu J, Wang L, Yang M, Zhou J. Antimicrobial and anti-biofilm effects of dihydroartemisinin-loaded chitosan nanoparticles against methicillin-resistant Staphylococcus aureus. Microb Pathog 2024; 199:107208. [PMID: 39657894 DOI: 10.1016/j.micpath.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The formation of biofilms enhances bacterial antibiotic resistance, posing significant challenges to clinical treatment. Methicillin-resistant Staphylococcus aureus (MRSA) is a primary pathogen in biofilm-associated infections. Its high antibiotic resistance and incidence rates make it a major clinical challenge, underscoring the urgent need for novel therapeutic strategies. Building on previous research, this study employs nanotechnology to fabricate dihydroartemisinin-chitosan nanoparticles (DHA-CS NPs) and, for the first time, applies them to the treatment of MRSA biofilm infections. The antibacterial and anti-biofilm activities of these compounds were evaluated, and their potential mechanisms of action were preliminarily explored. The results demonstrated that the DHA-CS NPs exhibited a minimum inhibitory concentration (MIC) of15 μg/mLand a minimum bactericidal concentration (MBC) of 30 μg/mL. At 15 μg/mL, the DHA-CS NPs significantly inhibited MRSA biofilm formation (P < 0.001),while at 7.5 μg/mL, they dispersed 67.4 ± 3.77 % of the preformed biofilms (P < 0.001). Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) confirmed the disruption of MRSA biofilms. Mechanistic studies, including phenol-sulfuric acid assays, static biofilm microtiter plate assays, and RT-qPCR, revealed that the DHA-CS NPs inhibited the synthesis of extracellular polymeric substances (EPS), suppressed the release of extracellular DNA (eDNA), and downregulated key biofilm-related genes (icaA, sarA, cidA, and agrA). These findings suggest that DHA-CS NPs hold significant promise for inhibiting and eradicating MRSA biofilms, providing a theoretical basis for the development of novel antibiofilm therapies.
Collapse
Affiliation(s)
- Peike Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yali Zeng
- Mianyang 404 Hospital, Mianyang, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lin Wang
- Mianyang 404 Hospital, Mianyang, China
| | - Min Yang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
5
|
Hai P, Jia H, Luo Z, Fan H, He Y, Li X, Lin P, Zhang Q, Gao Y, Yang J. Meroterpenoids with anti-triple negative breast cancer and antimicrobial activities from Arnebia euchroma. Fitoterapia 2024; 179:106234. [PMID: 39332506 DOI: 10.1016/j.fitote.2024.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Two new meroterpenoids, arneuchrols A and B (1 and 2), together with twelve known analogs (3-14) were isolated from the root of Arnebia euchroma. The structures of 1 and 2 including their absolute configurations were elucidated by NMR, HRESIMS, and DFT calculation of their NMR and ECD data. The structure of pseudoshikonin I, firstly isolated from Lithospermi radix was revised as shikonofuran E (4). Anti-triple negative breast cancer (anti-TNBC) and antimicrobial activities of the isolated compounds were tested. Compounds 3, 4, 6, 7, 9, 10, and 13 exhibited potent inhibitory activity against TNBC (MDA-MB-231 cells) with IC50 values in the range of 0.18-4.58 μM. Compound 10 displayed antifungal activity against five plant pathogenic fungi with MIC values in the range of 6.25-25 μg/mL. Compound 9 exhibited antibacterial activity against Micrococcus lysodeikticus with MIC value of 12.5 μg/mL.
Collapse
Affiliation(s)
- Ping Hai
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Haiyan Jia
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixia Fan
- Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Yunqing He
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; Key Lab of Process Analysis and Control of Sichuan Universities, Yibin 644000, Sichuan, China
| | - Xianyan Li
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Peng Lin
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Qin Zhang
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China.
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China.
| |
Collapse
|
6
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
7
|
Bai D, Cheng H, Mei J, Tian G, Wang Q, Yu S, Gao J, Zhong Y, Xin H, Wang X. Rapid formed temperature-sensitive hydrogel for the multi-effective wound healing of deep second-degree burn with shikonin based scar prevention. BIOMATERIALS ADVANCES 2024; 160:213851. [PMID: 38642517 DOI: 10.1016/j.bioadv.2024.213851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024]
Abstract
Burns are a significant public health issue worldwide, resulting in prolonged hospitalization, disfigurement, disability and, in severe cases, death. Among them, deep second-degree burns are often accompanied by bacterial infections, insufficient blood flow, excessive skin fibroblasts proliferation and collagen deposition, all of which contribute to poor wound healing and scarring following recovery. In this study, SNP/MCNs-SKN-chitosan-β-glycerophosphate hydrogel (MSSH), a hydrogel composed of a temperature-sensitive chitosan-β-glycerophosphate hydrogel matrix (CGH), mesoporous carbon nanospheres (MCNs), nitric oxide (NO) donor sodium nitroprusside (SNP) and anti-scarring substance shikonin (SKN), is intended for use as a biomedical material. In vitro tests have revealed that MSSH has broad-spectrum antibacterial abilities and releases NO in response to near-infrared (NIR) laser to promote angiogenesis. Notably, MSSH can inhibit excessive proliferation of fibroblasts and effectively reduce scarring caused by deep second-degree burns, as demonstrated by in vitro and in vivo tests.
Collapse
Affiliation(s)
- Danmeng Bai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Haoxin Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Junmin Mei
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Guangqi Tian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Qingqing Wang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Simin Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Yanhua Zhong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, PR China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, PR China.
| |
Collapse
|
8
|
Sharma HK, Karna A, Verma SK, Gupta P, Nagpal D, Kumar A, Pandita D, Mukherjee M, Parmar VS, Agarwal P, Lather V. Exploring the Synergistic Effect of Thymol with Oxacillin against Methicillin Resistant Staphylococcus aureus. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/11/2024] [Indexed: 01/12/2025] Open
|
9
|
Moussa AY. Endophytes: a uniquely tailored source of potential antibiotic adjuvants. Arch Microbiol 2024; 206:207. [PMID: 38581477 PMCID: PMC10998792 DOI: 10.1007/s00203-024-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 04/08/2024]
Abstract
Multidrug microbial resistance is risking an annual loss of more than 10 million people' lives by 2050. Solutions include the rational use of antibiotics and the use of drugs that reduce resistance or completely obliterate them. Here endophytes come to play due to their high-yield production and inherent nature to produce antimicrobial molecules. Around 40%, 45% and 17% of antibacterial agents were obtained from fungi, actinomycetes, and bacteria, respectively, whose secondary metabolites revealed effectiveness against resistant microbes such as MRSA, MRSE, and Shigella flexneri. Endophyte's role was not confined to bactericidal effect but extended to other mechanisms against MDR microbes, among which was the adjuvant role or the "magic bullets". Scarce focus was given to antibiotic adjuvants, and many laboratories today just screen for the antimicrobial activity without considering combinations with traditional antibiotics, which means real loss of promising resistance combating molecules. While some examples of synthetic adjuvants were introduced in the last decade, the number is still far from covering the disused antibiotics and restoring them back to clinical use. The data compiled in this article demonstrated the significance of quorum sensing as a foreseen mechanism for adjuvants from endophytes secondary metabolites, which call for urgent in-depth studies of their molecular mechanisms. This review, comprehensively and for the first time, sheds light on the significance of endophytes secondary metabolites in solving AMR problem as AB adjuvants.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
10
|
Ding C, Yang J, Wang N, Ding Q, Sun S, Gao Y, Shen L, Zhao T, Wang Y. Sodium alginate/polyvinyl alcohol nanofibers loaded with Shikonin for diabetic wound healing: In vivo and in vitro evaluation. Int J Biol Macromol 2024; 262:129937. [PMID: 38325683 DOI: 10.1016/j.ijbiomac.2024.129937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.
Collapse
Affiliation(s)
- Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd, LinJiang 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd, LinJiang 134600, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
11
|
Kim YG, Lee JH, Kim SH, Park SY, Kim YJ, Ryu CM, Seo HW, Lee JT. Inhibition of Biofilm Formation in Cutibacterium acnes, Staphylococcus aureus, and Candida albicans by the Phytopigment Shikonin. Int J Mol Sci 2024; 25:2426. [PMID: 38397101 PMCID: PMC10888572 DOI: 10.3390/ijms25042426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Sang-Hun Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Sun-Young Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Yu-Jeong Kim
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon Campus, Daejeon 34113, Republic of Korea; (Y.-J.K.); (C.-M.R.)
| | - Choong-Min Ryu
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon Campus, Daejeon 34113, Republic of Korea; (Y.-J.K.); (C.-M.R.)
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hwi-Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Tae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| |
Collapse
|
12
|
Liu Y, Wang Y, Kong J, Jiang X, Han Y, Feng L, Sun Y, Chen L, Zhou T. An effective antimicrobial strategy of colistin combined with the Chinese herbal medicine shikonin against colistin-resistant Escherichia coli. Microbiol Spectr 2023; 11:e0145923. [PMID: 37800902 PMCID: PMC10714725 DOI: 10.1128/spectrum.01459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Infections caused by multidrug-resistant Escherichia coli (MDR E. coli) have become a major global healthcare problem due to the lack of effective antibiotics today. The emergence of colistin-resistant E. coli strains makes the situation even worse. Therefore, new antimicrobial strategies are urgently needed to combat colistin-resistant E. coli. Combining traditional antibiotics with non-antibacterial drugs has proved to be an effective approach of combating MDR bacteria. This study investigated the combination of colistin and shikonin, a Chinese herbal medicine, against colistin-resistant E. coli. This combination showed good synergistic antibacterial both in vivo and in vitro experiments. Under the background of daily increasing colistin resistance in E. coli, this research points to an effective antimicrobial strategy of using colistin and shikonin in combination against colistin-resistant E. coli.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yue Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianguo Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Dong H, Chang CD, Gao F, Zhang N, Yan XJ, Wu X, Wang YH. The anti-leukemia activity and mechanisms of shikonin: a mini review. Front Pharmacol 2023; 14:1271252. [PMID: 38026987 PMCID: PMC10651754 DOI: 10.3389/fphar.2023.1271252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Leukemia encompasses a group of highly heterogeneous diseases that pose a serious threat to human health. The long-term outcome of patients with leukemia still needs to be improved and new effective therapeutic strategies continue to be an unmet clinical need. Shikonin (SHK) is a naphthoquinone derivative that shows multiple biological function includes anti-tumor, anti-inflammatory, and anti-allergic effects. Numerous studies have reported the anti-leukemia activity of SHK during the last 3 decades and there are studies showing that SHK is particularly effective towards various leukemia cells compared to solid tumors. In this review, we will discuss the anti-leukemia effect of SHK and summarize the underlying mechanisms. Therefore, SHK may be a promising agent to be developed as an anti-leukemia drug.
Collapse
Affiliation(s)
- Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Chun-Di Chang
- Department of Neurology, Jilin Province People’s Hospital, Changchun, China
| | - Fei Gao
- Endocrine Department, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Na Zhang
- Electrodiagnosis Department, Jilin Province FAW General Hospital, Changchun, China
| | - Xing-Jian Yan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xue Wu
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yue-Hui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Wang R, Zhou X, Chen J, Chen Y, Xiong Y, Duan X, Liao X, Wang J. Ruthenium polypyridine complexes containing prenyl groups as antibacterial agents against Staphylococcus aureus through a membrane-disruption mechanism. Arch Pharm (Weinheim) 2023; 356:e2300175. [PMID: 37421212 DOI: 10.1002/ardp.202300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Four new ruthenium polypyridyl complexes with prenyl groups, [Ru(bpy)2 (MHIP)](PF6 )2 (Ru(II)-1), [Ru(dtb)2 (MHIP)](PF6 )2 (Ru(II)-2), [Ru(dmb)2 (MHIP)](PF6 )2 (Ru(II)-3), and [Ru(dmob)2 (MHIP)](PF6 )2 (Ru(II)-4) (bpy = 2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dmob = 4,4'-dimethoxy-2,2'-bipyridine, and MHIP = 2-(2,6-dimethylhepta-1,5-dien-1-yl)-1H-imidazo[4,f][1,10]phenanthroline), were synthesized and characterized. Their antibacterial activities against Staphylococcus aureus were assessed, and the minimum inhibition concentration (MIC) value of Ru(II)-2 against S. aureus was only 0.5 µg/mL, showing the best antibacterial activity among them. S. aureus could be quickly killed by Ru(II)-2 in 30 min and Ru(II)-2 displayed an obvious inhibitive effect on the formation of a biofilm, which was essential to avoid the development of drug-resistance. Meanwhile, Ru(II)-2 exhibited a stable MIC value against antibiotic-resistant bacteria. The antibacterial mechanism of Ru(II)-2 was probably related to depolarization of the cell membrane, and a change of permeability was associated with the formation of reactive oxygen species, leading to leakage of nucleic acid and bacterial death. Furthermore, Ru(II)-2 hardly showed toxicity to mammalian cells and the Galleria mellonella worm. Finally, murine infection studies also illustrated that Ru(II)-2 was highly effective against S. aureus in vivo.
Collapse
Affiliation(s)
- Runbin Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xiaomin Zhou
- Shenzhen Second People's Hospital, Shenzhen, China
| | - Jingjing Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yushou Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yanshi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xuemin Duan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xiangwen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Jintao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| |
Collapse
|
15
|
Han H, Chen L, Liang S, Lü J, Wu Y, Wang X, Xu F, Ge L, Xiao L. PLA-HPG based coating enhanced anti-biofilm and wound healing of Shikonin in MRSA-infected burn wound. Front Bioeng Biotechnol 2023; 11:1243525. [PMID: 37635995 PMCID: PMC10448828 DOI: 10.3389/fbioe.2023.1243525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Burn wounds are susceptible to bacterial infections, including Methicillin-resistant Staphylococcus aureus (MRSA), which typically form biofilms and exhibit drug resistance. They also have specific feature of abundant exudate, necessitating frequent drug administration. Shikonin (SKN) has been reported to reverse MRSA drug resistance and possesses anti-biofilm and wound healing properties, however, it suffers from drawbacks of low solubility and instability. In this study, we developed PLA-HPG based bioadhesive nanoparticles SKN/BNP, which demonstrated a drug loading capacity of about 3.6%, and exhibited sustained-release behavior of SKN. The aldehyde groups present on the surface of BNP improved the local adhesion of SKN/BNP both in vitro and in vivo, thereby reducing the frequency of drug dosing in exudate-rich burn wounds. BNP alone enhanced proliferation and migration of the fibroblast, while SKN/BNP promoted fibroblast proliferation and migration as well as angiogenesis. Due to its bioadhesive property, BNP directly interacted with biofilm and enhanced the efficacy of SKN against MRSA biofilm in vitro. In a mouse model of MRSA-infected burn wounds, SKN/BNP demonstrated improved anti-biofilm and wound healing efficiency. Overall, our findings suggest that SKN/BNP holds great promise as a novel and effective treatment option for clinical applications in MRSA-infected burn wounds.
Collapse
Affiliation(s)
- Huiyu Han
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lianheng Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shu Liang
- Center Lab of Longhua Branch, Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jiawei Lü
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yashi Wu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fei Xu
- Department of Plastic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Lanlan Ge
- Center Lab of Longhua Branch, Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lingyun Xiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
- Center Lab of Longhua Branch, Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Samsonowicz-Górski J, Koszelewski D, Kowalczyk P, Śmigielski P, Hrunyk A, Kramkowski K, Wypych A, Szymczak M, Lizut R, Ostaszewski R. Promiscuous Lipase-Catalyzed Knoevenagel-Phospha-Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates. Int J Mol Sci 2022; 23:ijms23158819. [PMID: 35955950 PMCID: PMC9368977 DOI: 10.3390/ijms23158819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 12/11/2022] Open
Abstract
An enzymatic route for phosphorous–carbon bond formation was developed by discovering new promiscuous activity of lipase. We reported a new metal-free biocatalytic method for the synthesis of pharmacologically relevant β-phosphonomalononitriles via a lipase-catalyzed one-pot Knoevenagel–phospha–Michael reaction. We carefully analyzed the best conditions for the given reaction: the type of enzyme, temperature, and type of solvent. A series of target compounds was synthesized, with yields ranging from 43% to 93% by enzymatic reaction with Candida cylindracea (CcL) lipase as recyclable and, a few times, reusable catalyst. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The applicability of the same catalyst in the synthesis of β-phosphononitriles is also described. Further, the obtained compounds were validated as new potential antimicrobial agents with characteristic E. coli bacterial strains. The pivotal role of such a group of phosphonate derivatives on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics. The impact of the β-phosphono malonate chemical structure on antimicrobial activity was demonstrated. The crucial role of the substituents attached to the aromatic ring on the inhibitory action against selected pathogenic E. coli strains was revealed. Among tested compounds, four β-phosphonate derivatives showed an antimicrobial activity profile similar to that obtained with currently used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained compounds constitute a convenient platform for further chemical functionalization, allowing for a convenient change in their biological activity profile. It should also be noted that the cost of the compounds obtained is low, which may be an attractive alternative to the currently used antimicrobial agents. The observed results are especially important because of the increasing resistance of bacteria to various drugs and antibiotics.
Collapse
Affiliation(s)
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Correspondence: (D.K.); (P.K.); Tel.: +48-223432012 (D.K.); +48-227653301 (P.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
- Correspondence: (D.K.); (P.K.); Tel.: +48-223432012 (D.K.); +48-227653301 (P.K.)
| | - Paweł Śmigielski
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Anastasiia Hrunyk
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Rafał Lizut
- Institute of Mathematics, Informatics and Landscape Architecture, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|