1
|
Li W, Huang Y, Yuan H, Han J, Li Z, Tong A, Li Y, Li H, Liu Y, Jia L, Wang X, Li J, Zhang B, Li L. Characterizing transcripts of HIV-1 different substrains using direct RNA sequencing. Heliyon 2024; 10:e39474. [PMID: 39512311 PMCID: PMC11541491 DOI: 10.1016/j.heliyon.2024.e39474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Post-transcriptional processing and modification of viral RNA, including alternative splicing, polyadenylation, and methylation, play crucial roles in regulating viral gene expression, enhancing genomic stability, and increasing replication efficiency. These processes have significant implications for viral biology and antiviral therapies. In this study, using Oxford Nanopore Technology (ONT) direct RNA sequencing (DRS), we provided a comprehensive analysis of the transcriptome and epitranscriptome features of the HIV-1 B (NL4-3) subtype strain and, for the first time, characterized these features in the CRF01_AE (GX2005002) subtype strain. We identified 11 novel splicing sites among the 61 RNA isoforms in NL4-3 and defined the splicing sites for GX2005002 based on its 63 RNA isoforms. Furthermore, we identified 74 and 79 chemically modified sites in the transcripts of NL4-3 and GX2005002, respectively. Although differences in poly(A) tail length were observed between the two HIV-1 strains, no specific correlation was detected between poly(A) tail length and the number of modification sites. Additionally, three distinct N6-methyladenosine (m6A) modification sites were identified in both NL4-3 and GX2005002 transcripts. This study provides a detailed analysis of post-transcriptional processing modifications in HIV-1 and suggests promising avenues for future research that could potentially be applied as new therapeutic targets in HIV treatment.
Collapse
Affiliation(s)
- Weizhen Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Haowen Yuan
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhengyang Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yating Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Bohan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lin Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
2
|
Yu LM, Wang ZR, Fan QX, Jia T, Zhang TH, Zhu XQ, Liu Q. mRNA 5-methylcytosine in Eimeria tenella oocysts: An abundant post-transcriptional modification associated with broad-ranging biological processes. Int J Biol Macromol 2024; 280:135817. [PMID: 39306157 DOI: 10.1016/j.ijbiomac.2024.135817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Eimeria tenella is the major causative agent of chicken coccidiosis. 5-Methylcytosine (m5C) is a type of RNA chemical modifications reported to regulate diverse biological processes. However, the distribution and biological functions of m5C in E. tenella mRNAs are yet to be known. Herein, we report transcriptome-wide profiling of mRNA m5C in E. tenella by employing m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). Our data showed that m5C peaks were distributed across the whole mRNA body. Compared with unsporulated oocysts, there were 2813 hypermethylated and 1850 hypomethylated m5C peaks in sporulated oocysts. Generally, a positive correlation between m5C modification and gene expression levels was observed. The mRNA sequencing (RNA-seq) and m5C-RIP-seq data were consistent with the results of the quantitative reverse transcription PCR (RT-qPCR) and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), respectively. Gene Ontology (GO) and pathway enrichment analysis predicated diverse biological functions and pathways, including microtubule motor activity, helicase activity, cGMP-PKG signaling pathway, aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, and spliceosome. Meanwhile, stage-specific gene expression signatures of m5C-related regulators were observed. Altogether, our findings reveal the transcriptional significance of m5C modification in E. tenella oocysts, providing resources and clues for further in-depth research.
Collapse
Affiliation(s)
- Lin-Mei Yu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Zi-Rui Wang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Qing-Xin Fan
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Tao Jia
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Tian-Hong Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| |
Collapse
|
3
|
Li ZL, Xie Y, Xie Y, Chen H, Zhou X, Liu M, Zhang XL. HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1. ACS Chem Biol 2024; 19:1648-1660. [PMID: 38954741 DOI: 10.1021/acschembio.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.
Collapse
Affiliation(s)
- Zhu-Li Li
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yuke Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Hongliang Chen
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- Department of Chemistry and Molecular Science, Wuhan University, Wuhan 430070, Hubei Province, China
| | - Min Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan 430071, China
| |
Collapse
|
4
|
Levintov L, Vashisth H. Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop. J Phys Chem B 2024; 128:3157-3166. [PMID: 38535997 PMCID: PMC11000223 DOI: 10.1021/acs.jpcb.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The N6-methyladenosine modification is one of the most abundant post-transcriptional modifications in ribonucleic acid (RNA) molecules. Using molecular dynamics simulations and alchemical free-energy calculations, we studied the structural and energetic implications of incorporating this modification in an adenine mononucleotide and an RNA hairpin structure. At the mononucleotide level, we found that the syn configuration is more favorable than the anti configuration by 2.05 ± 0.15 kcal/mol. The unfavorable effect of methylation was due to the steric overlap between the methyl group and a nitrogen atom in the purine ring. We then probed the effect of methylation in an RNA hairpin structure containing an AUCG tetraloop, which is recognized by a "reader" protein (YTHDC1) to promote transcriptional silencing of long noncoding RNAs. While methylation had no significant conformational effect on the hairpin stem, the methylated tetraloop showed enhanced conformational flexibility compared to the unmethylated tetraloop. The increased flexibility was associated with the outward flipping of two bases (A6 and U7) which formed stacking interactions with each other and with the C8 and G9 bases in the tetraloop, leading to a conformation similar to that in the RNA/reader protein complex. Therefore, methylation-induced conformational flexibility likely facilitates RNA recognition by the reader protein.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
5
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
6
|
Jin Z, Sheng J, Hu Y, Zhang Y, Wang X, Huang Y. Shining a spotlight on m6A and the vital role of RNA modification in endometrial cancer: a review. Front Genet 2023; 14:1247309. [PMID: 37886684 PMCID: PMC10598767 DOI: 10.3389/fgene.2023.1247309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
RNA modifications are mostly dynamically reversible post-transcriptional modifications, of which m6A is the most prevalent in eukaryotic mRNAs. A growing number of studies indicate that RNA modification can finely tune gene expression and modulate RNA metabolic homeostasis, which in turn affects the self-renewal, proliferation, apoptosis, migration, and invasion of tumor cells. Endometrial carcinoma (EC) is the most common gynecologic tumor in developed countries. Although it can be diagnosed early in the onset and have a preferable prognosis, some cases might develop and become metastatic or recurrent, with a worse prognosis. Fortunately, immunotherapy and targeted therapy are promising methods of treating endometrial cancer patients. Gene modifications may also contribute to these treatments, as is especially the case with recent developments of new targeted therapeutic genes and diagnostic biomarkers for EC, even though current findings on the relationship between RNA modification and EC are still very limited, especially m6A. For example, what is the elaborate mechanism by which RNA modification affects EC progression? Taking m6A modification as an example, what is the conversion mode of methylation and demethylation for RNAs, and how to achieve selective recognition of specific RNA? Understanding how they cope with various stimuli as part of in vivo and in vitro biological development, disease or tumor occurrence and development, and other processes is valuable and RNA modifications provide a distinctive insight into genetic information. The roles of these processes in coping with various stimuli, biological development, disease, or tumor development in vivo and in vitro are self-evident and may become a new direction for cancer in the future. In this review, we summarize the category, characteristics, and therapeutic precis of RNA modification, m6A in particular, with the purpose of seeking the systematic regulation axis related to RNA modification to provide a better solution for the treatment of EC.
Collapse
Affiliation(s)
- Zujian Jin
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jingjing Sheng
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yingying Hu
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Zhang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Xiaoxia Wang
- Reproductive Medicine Center, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China
| | - Yiping Huang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
7
|
Zhang H, Yang Y, Liu Z, Xu H, Zhu H, Wang P, Liang G. Significance of methylation-related genes in diagnosis and subtype classification of renal interstitial fibrosis. Hereditas 2023; 160:32. [PMID: 37496082 PMCID: PMC10373342 DOI: 10.1186/s41065-023-00295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND RNA methylation modifications, such as N1-methyladenosine/N6-methyladenosine /N5-methylcytosine (m1A/m6A/m5C), are the most common RNA modifications and are crucial for a number of biological processes. Nonetheless, the role of RNA methylation modifications of m1A/m6A/m5C in the pathogenesis of renal interstitial fibrosis (RIF) remains incompletely understood. METHODS Firstly, we downloaded 2 expression datasets from the GEO database, namely GSE22459 and GSE76882. In a differential analysis of these datasets between patients with and without RIF, we selected 33 methylation-related genes (MRGs). We then applied a PPI network, LASSO analysis, SVM-RFE algorithm, and RF algorithm to identify key MRGs. RESULTS We eventually obtained five candidate MRGs (WTAP, ALKBH5, YTHDF2, RBMX, and ELAVL1) to forecast the risk of RIF. We created a nomogram model derived from five key MRGs, which revealed that the nomogram model may be advantageous to patients. Based on the selected five significant MRGs, patients with RIF were classified into two MRG patterns using consensus clustering, and the correlation between the five MRGs, the two MRG patterns, and the genetic pattern with immune cell infiltration was shown. Moreover, we conducted GO and KEGG analyses on 768 DEGs between MRG clusters A and B to look into their different involvement in RIF. To measure the MRG patterns, a PCA algorithm was developed to determine MRG scores for each sample. The MRG scores of the patients in cluster B were higher than those in cluster A. CONCLUSIONS Ultimately, we concluded that cluster A in the two MRG patterns identified on these five key m1A/m6A/m5C regulators may be associated with RIF.
Collapse
Affiliation(s)
- Hanchao Zhang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yue Yang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhengdao Liu
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong Xu
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Han Zhu
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Peirui Wang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guobiao Liang
- Medical College of Soochow University, Suzhou, Jiangsu, China.
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Li S, Li X, Wan YJ, Ying YL, Yu RJ, Long YT. SmartImage: A Machine Learning Method for Nanopore Identifying Chemical Modifications on RNA. Chem Asian J 2023; 18:e202201144. [PMID: 36527379 DOI: 10.1002/asia.202201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
RNA modifications modulate essential cellular functions. However, it is challenging to quantitatively identify the differences in RNA modifications. To further improve the single-molecule sensing ability of nanopores, we propose a machine-learning algorithm called SmartImage for identifying and classifying nanopore electrochemical signals based on a combination of improved graph conversion methods and deep neural networks. SmartImage is effective for nearly all ranges of signal duration, which breaks the limitation of the current nanopore algorithm. The overall accuracy (OA) of our proposed recognition strategy exceeded 90% for identifying three types of RNAs. Prediction experiments show that the SmartImage owns the ability to recognize one modified RNA molecule from 1000 normal RNAs with OA >90%. Thus our proposed model and algorithm hold the potential application in clinical applications.
Collapse
Affiliation(s)
- Shijia Li
- School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Xinyi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Yong-Jing Wan
- School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| |
Collapse
|
9
|
Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022; 14:v14081666. [PMID: 36016289 PMCID: PMC9412694 DOI: 10.3390/v14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.
Collapse
|