1
|
Olejarz W, Sadowski K, Radoszkiewicz K. Extracellular Vesicles in Atherosclerosis: State of the Art. Int J Mol Sci 2023; 25:388. [PMID: 38203558 PMCID: PMC10779125 DOI: 10.3390/ijms25010388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in the arteries, leading to narrowing and thrombosis that causes mortality. Emerging evidence has confirmed that atherosclerosis affects younger people and is involved in the majority of deaths worldwide. EVs are associated with critical steps in atherosclerosis, cholesterol metabolism, immune response, endothelial dysfunction, vascular inflammation, and remodeling. Endothelial cell-derived EVs can interact with platelets and monocytes, thereby influencing endothelial dysfunction, atherosclerotic plaque destabilization, and the formation of thrombus. EVs are potential diagnostic and prognostic biomarkers in atherosclerosis (AS) and cardiovascular disease (CVD). Importantly, EVs derived from stem/progenitor cells are essential mediators of cardiogenesis and cardioprotection and may be used in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
2
|
Procyk G, Czapla A, Jałocha K, Tymińska A, Grabowski M, Gąsecka A. The role of galectin-3 in atrial fibrillation. J Mol Med (Berl) 2023; 101:1481-1492. [PMID: 37773454 PMCID: PMC10698102 DOI: 10.1007/s00109-023-02378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Numerous risk factors for atrial fibrillation (AF) progression have been identified. However, the biomarkers mentioned in the guidelines do not have any clinically relevant predictive value. Some research groups investigated the potential utility of galectin-3 (gal-3) as a diagnostic, prognostic, and predictive biomarker in AF. In this review, we have thoroughly summarized the current data on the role of gal-3 in AF based on the original research in this field. Patients suffering from AF present with increased levels of gal-3. The concentration of gal-3 differs between patients with AF depending on the type of AF - it is higher in patients with persistent AF than in patients with paroxysmal AF. Multiple studies investigating the reappearance of AF in patients who underwent ablation have shown that gal-3 is a promising biomarker to predict the outcome of this therapy. Patients with increased levels of gal-3 are at higher risk of AF recurrence. Although the research considered in this work addressed many aspects of the role of gal-3 in AF, most of it has been conducted on a small group of patients. Therefore, further research and extensive clinical trials confirming described findings are highly warranted.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland.
| | - Aleksandra Czapla
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Kamila Jałocha
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Agata Tymińska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| |
Collapse
|
3
|
Limpitikul WB, Das S. Obesity-Related Atrial Fibrillation: Cardiac Manifestation of a Systemic Disease. J Cardiovasc Dev Dis 2023; 10:323. [PMID: 37623336 PMCID: PMC10455513 DOI: 10.3390/jcdd10080323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and is associated with increased morbidity and mortality. The mechanisms underlying AF are complex and multifactorial. Although it is well known that obesity is a strong risk factor for AF, the mechanisms underlying obesity-related AF are not completely understood. Current evidence proposes that in addition to overall hemodynamic changes due to increased body weight, excess adiposity raises systemic inflammation and oxidative stress, which lead to adverse atrial remodeling. This remodeling includes atrial fibrosis, atrial dilation, decreased electrical conduction between atrial myocytes, and altered ionic currents, making atrial tissue more vulnerable to both the initiation and maintenance of AF. However, much remains to be learned about the mechanistic links between obesity and AF. This knowledge will power the development of novel diagnostic tools and treatment options that will help combat the rise of the global AF burden among the obesity epidemic.
Collapse
Affiliation(s)
- Worawan B. Limpitikul
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Autoantibodies in Atrial Fibrillation-State of the Art. Int J Mol Sci 2023; 24:ijms24031852. [PMID: 36768174 PMCID: PMC9916061 DOI: 10.3390/ijms24031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. To date, a lot of research has been conducted to investigate the underlying mechanisms of this disease at both molecular and cellular levels. There is increasing evidence suggesting that autoimmunity is an important factor in the initiation and perpetuation of AF. Autoantibodies are thought to play a pivotal role in the regulation of heart rhythm and the conduction system and, therefore, are associated with AF development. In this review, we have summarized current knowledge concerning the role of autoantibodies in AF development as well as their prognostic and predictive value in this disease. The establishment of the autoantibody profile of separate AF patient groups may appear to be crucial in terms of developing novel treatment approaches for those patients; however, the exact role of various autoantibodies in AF is still a matter of ongoing debate.
Collapse
|
5
|
Grodzka O, Procyk G, Gąsecka A. The Role of MicroRNAs in Myocarditis-What Can We Learn from Clinical Trials? Int J Mol Sci 2022; 23:ijms232416022. [PMID: 36555663 PMCID: PMC9783955 DOI: 10.3390/ijms232416022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart with a viral infection as the most common cause. It affects most commonly young adults. Although endomyocardial biopsy and cardiac magnetic resonance are used in the diagnosis, neither of them demonstrates all the required qualities. There is a clear need for a non-invasive, generally available diagnostic tool that will still remain highly specific and sensitive. These requirements could be possibly met by microribonucleic acids (miRNAs), which are small, non-coding RNA molecules that regulate many fundamental cell functions. They can be isolated from cells, tissues, or body fluids. Recently, several clinical studies have shown the deregulation of different miRNAs in myocarditis. The phase of the disease has also been evidenced to influence miRNA levels. These changes have been observed both in adult and pediatric patients. Some studies have revealed a correlation between the change in particular miRNA concentration and the degree of cardiac damage and inflammation. All of this indicates miRNAs as potential novel biomarkers in the diagnosis of myocarditis, as well as a prognostic tool for this condition. This review aims to summarize the current knowledge about the role of miRNAs in myocarditis based on the results of clinical studies.
Collapse
Affiliation(s)
- Olga Grodzka
- Department of Neurology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence: ; Tel.: +48-723-488-305
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|