1
|
Wen Y, Xie Z, Xue S, Zhao M, Liu T, Shi W. Acylhydrazone-functionalized starch for efficient removal of hazardous dyes, heavy metal ion, and sulfides from wastewater: Adsorption behavior and mechanism analysis. Int J Biol Macromol 2024; 279:135461. [PMID: 39255878 DOI: 10.1016/j.ijbiomac.2024.135461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Herein, a novel acylhydrazone biosorbent (GSL) with abundant three-dimensional porous structure was successfully prepared by using low-cost starch as raw material for water pollution remediation applications. Various analytical techniques were applied to characterize the morphological structure and chemical composition. Interestingly, the adsorption efficiency of the adsorbent towards Malachite green (MG), Safranin O (SO), Cu2+, and sulfide in the static adsorption experiment was extremely high due to presence of ample functional groups. Additionally, the adsorption isotherm and kinetic experiments revealed that the adsorption processes were based on monolayer chemisorption. The maximum sorption amounts were 2237.4961 mg/g for SO, 2101.6610 mg/g for MG, 410.7019 mg/g for Cu2+, and 483.0194 mg/g for sulfides at 298.15 k. The thermodynamic analysis also demonstrated that all adsorption processes were spontaneous heat processes. The adsorption mechanism was analyzed by FTIR, SEM-EDAX and XPS. The adsorption of SO onto GSL reached 1025.8617 mg/g in continuous adsorption experiments, and the experimental data were fitted through the Thomas model and Yoon-Nelson model. Furthermore, the GSL showed good reusability and salt resistance. Importantly, starch-based acylhydrazone as the adsorbent for the simultaneous removal of hazardous dyes, heavy metal ions and sulfhides has not yet been seen reported.
Collapse
Affiliation(s)
- Yiping Wen
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China.
| | - Songsong Xue
- Water Service Branch, Sinopec Zhongyuan Oilfield, Puyang 457001, China
| | - Mengyao Zhao
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - Tao Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
2
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024; 282:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
3
|
Oliveira JPD, Silva IBD, Costa JDSS, Oliveira JSD, Oliveira EL, Coutinho ML, Almeida MEFD, Landim LB, Silva NMCD, Oliveira CPD. Bibliometric study and potential applications in the development of starch films with nanocellulose: A perspective from 2019 to 2023. Int J Biol Macromol 2024; 277:133828. [PMID: 39084985 DOI: 10.1016/j.ijbiomac.2024.133828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
This study aimed to perform a bibliometric analysis of starch films with nanocellulose, using the Scopus database and VOSviewer and Bibliometrix software. A total of 258 documents were identified between 2019 and 2023, reflecting a growing interest in research, particularly in journals such as the International Journal of Biological Macromolecules, Polymers, and Carbohydrate Polymers. The most common terms were "starch" (349 occurrences), "cellulose" (207), and "tensile strength" (175). China (58 articles), Brazil (38), and India (33) led scientific production, with authors like Ilyas (13 articles) and Sapuan (10) at the forefront. Approximately 41.7 % of the studies used corn starch. The analysis revealed that 66 % of the studies investigated films with cellulose nanofibrils (CNF), 32 % with cellulose nanocrystals (CNC), and 2 % with bacterial nanocellulose (CB). The majority of studies (94.1 %) used the casting method for film production. Additionally, 35.44 % focused on reinforcing films with nanocellulose, while 7 % developed blends with other biopolymers. About 59.44 % examined the performance of starch films for food packaging, 11.25 % explored practical applications in various foods. Furthermore, 7.94 % incorporated active agents to improve antioxidant and antimicrobial properties, 1.30 % investigated active packaging. Moreover, 2.36 % explored the use of films in materials engineering, and 2.36 % explored biomedical potential. Only 0.40 % evaluated the impact of films on wastewater treatment. The analysis highlights the potential of starch films with nanocellulose, demonstrating their diverse applications and the growing interest in the field.
Collapse
Affiliation(s)
- Jocilane Pereira de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil.
| | - Isaac Borges da Silva
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Jéssica Santos de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Esaul Lucas Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Mateus Lima Coutinho
- Department of Chemistry, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Lucas Brito Landim
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | | |
Collapse
|
4
|
Popov S, Paderin N, Chistiakova E, Sokolova A, Konyshev IV, Belozerov VS, Byvalov AA. Swelling, Protein Adsorption, and Biocompatibility of Pectin-Chitosan Hydrogels. Gels 2024; 10:472. [PMID: 39057495 PMCID: PMC11275652 DOI: 10.3390/gels10070472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The study aims to determine how chitosan impacts pectin hydrogel's ability to attach peritoneal leukocytes, activate complement, induce hemolysis, and adsorb blood proteins. The hydrogels PEC-Chi0, PEC-Chi25, PEC-Chi50, and PEC-Chi75 were prepared by placing a mixture solution of 4% pectin and 4% chitosan in a ratio of 4:0, 3:1, 2:2, and 1:3 in a solution of 1.0 M CaCl2. Chitosan was found to modify the mechanical properties of pectin-calcium hydrogels, such as hardness and cohesiveness-to-adhesiveness ratio. Chitosan in the pectin-calcium hydrogel caused pH-sensitive swelling in Hanks' solution. The PEC-Chi75 hydrogel was shown to adsorb serum proteins at pH 7.4 to a greater extent than other hydrogels. PEC-Chi75's strong adsorption capacity was related to lower peritoneal leukocyte adherence to its surface when compared to other hydrogels, showing improved biocompatibility. Using the optical tweezers approach, it was shown that the force of interaction between pectin-chitosan hydrogels and plasma proteins increased from 10 to 24 pN with increasing chitosan content from 0 to 75%. Thus, the properties of pectin-calcium hydrogel, which determine interactions with body tissues after implantation, are improved by the addition of chitosan, making pectin-chitosan hydrogel a promising candidate for smart biomaterial development.
Collapse
Affiliation(s)
- Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (E.C.); (A.S.); (I.V.K.); (V.S.B.); (A.A.B.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
6
|
Brudzyńska P, Kulka-Kamińska K, Piwowarski Ł, Lewandowska K, Sionkowska A. Dialdehyde Starch as a Cross-Linking Agent Modifying Fish Collagen Film Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1475. [PMID: 38611990 PMCID: PMC11012723 DOI: 10.3390/ma17071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The aim of this research was the modification of fish collagen films with various amounts of dialdehyde starch (DAS). Film properties were examined before and after the cross-linking process by DAS. Prepared biopolymer materials were characterized by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy. Moreover, the mechanical, thermal and swelling properties of the films were evaluated and the contact angle was measured. Research has shown that dialdehyde starch applied as a cross-linking agent influences collagen film properties. Mechanical testing indicated a decrease in Young's Modulus and an increase in breaking force, elongation at break, and tensile strength parameters. Results for contact angle were significantly higher for collagen films cross-linked with DAS; thus, the hydrophilicity of samples decreased. Modified samples presented a lower swelling degree in PBS than native collagen films. However, the highest values for the degree of swelling among the modified specimens were obtained from the 1% DAS samples, which were 717% and 702% for 1% and 2% collagen, respectively. Based on AFM images and roughness values, it was noticed that DAS influenced collagen film surface morphology. The lowest value of Rq was observed for 2%Coll_2%DAS and was approximately 10 nm. Analyzing thermograms for collagen samples, it was observed that pure collagen samples were less thermally stable than cross-linked ones. Dialdehyde starch is a promising cross-linking agent for collagen extracted from fish skin and may increase its applicability.
Collapse
Affiliation(s)
- Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Łukasz Piwowarski
- SanColl Sp. z o.o., Juliusza Słowackiego 24, 35-060 Rzeszów, Poland;
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| |
Collapse
|
7
|
Shi Z, Yang F, Hu Y, Pang Q, Shi L, Du T, Cao Y, Song B, Yu X, Cao Z, Ye Z, Liu C, Yu R, Chen X, Zhu Y, Pang Q. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym 2024; 327:121666. [PMID: 38171658 DOI: 10.1016/j.carbpol.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China; Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xueqiang Yu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Zhaoxun Cao
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315100, China
| | - Rongyao Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Wang H, Dinesh, Kim J. Development of lightweight, high-strength, and highly porous ligno-nanocellulosic foam with excellent antioxidant and insulation properties. Carbohydr Polym 2024; 326:121616. [PMID: 38142097 DOI: 10.1016/j.carbpol.2023.121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
This study reports an environmentally friendly ligno-nanocellulosic foam prepared by utilizing lignin (LGN), cellulose nanofiber (CNF), and citric acid (CA) as a green crosslinker through an easy, low-cost, and environmentally friendly process. The FTIR study and XPS analysis of the prepared LGN/CNF foams confirm the crosslinking between the components, which leads to lower shrinkage, lower density, and higher porosity than the neat CNF foam, achieving a remarkably low density of 19.59 mg/cm3 and high porosity of 98.84 % The morphology and microstructure of the foam show a uniform three-dimensional porous network built by strong cell walls. The crosslinked LGN/CNF foams indicate 182 % higher compressive modulus and 306 % higher compressive strength at 70 % strain than the neat CNF foam. Further, the addition of LGN and CA enhances the antioxidant activity of the foam. The prepared foam shows lower thermal conductivity and better sound absorption performance than the neat CNF foam, indicating a potential to be used as thermal insulation and sound-absorbing materials that can mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Hanbin Wang
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Dinesh
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Jaehwan Kim
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.
| |
Collapse
|
9
|
Chełminiak-Dudkiewicz D, Smolarkiewicz-Wyczachowski A, Ziegler-Borowska M, Kaczmarek H. Photochemical stability of chitosan films doped with cannabis oil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112850. [PMID: 38277961 DOI: 10.1016/j.jphotobiol.2024.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
The effect of UV radiation from three different sources on chitosan (CS) films containing the addition of 10% by weight of cannabis oil was investigated. Cannabis oil (CBD) alone exposed to UV is unstable, but its photostability significantly increases in the chitosan matrix. The course of photochemical reactions, studied by FTIR spectroscopy, is slow and inefficient in chitosan with CBD, even under high-energy UV sources. The research also included chitosan films with CBD cross-linked with dialdehyde starch (DAS). Using AFM microscopy and contact angle measurements, the morphology and surface properties of prepared chitosan films with CBD were investigated, respectively. It was found that CBD embedded in CS is characterized by the best photostability under the influence of an LED emitting long-wave radiation. Using a monochromatic and polychromatic UV lamp (HPK and UV-C) emitting high-energy radiation, gradual degradation accompanied by oxidation was observed, both in the CS chains and in the CBD additive. Additionally, changes in surface properties are observed during UV irradiation. It was concluded that CS protects CBD against photodegradation, and a further improvement in photochemical stability is achieved after system cross-linking with DAS.
Collapse
Affiliation(s)
| | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
10
|
Wang Y, Wang N, Wang P, Yang F, Han C, Yu D. Preparation of magnetic dialdehyde starch-immobilized phospholipase A 1 and acyl transfer in reflection. Int J Biol Macromol 2024; 257:128804. [PMID: 38101664 DOI: 10.1016/j.ijbiomac.2023.128804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
In this paper, using a coprecipitation method to prepare Fe3O4 magnetic nanoparticles (Fe3O4 MNPS), magnetic dialdehyde starch nanoparticles with immobilized phospholipase A1 (MDSNIPLA) were successfully prepared by using green dialdehyde starch (DAS) instead of glutaraldehyde as the crosslinking agent. The Fe3O4 MNPS was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) surface area analysis method, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) et al. The results showed that the alkaline resistance and acid resistance of the enzyme were improved after the crosslinking of DAS. After repeated use (seven times), the relative activity of MDSNIPLA reached 56 %, and the magnetic dialdehyde starch nanoparticles (MDASN) had good carrier performance. MDSNIPLA was applied to enzymatic hydrolysis of phospholipids in the soybean oil degumming process. The results showed that the acyl transfer rate of sn-2-HPA was 14.01 %, and the content of free fatty acids was 1.144 g/100 g after 2 h reaction at 50 °C and pH 5.0 with appropriate boric acid. The immobilized enzyme has good thermal stability and storage stability, and its application of soybean oil improves the efficiency of the oil.
Collapse
Affiliation(s)
- Yawen Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuming Yang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Cuiping Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Kutner A, Brown G, Kallay E. Novel Strategies in the Development of New Therapies, Drug Substances, and Drug Carriers Volume II. Int J Mol Sci 2023; 24:5621. [PMID: 36982694 PMCID: PMC10053869 DOI: 10.3390/ijms24065621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The highly successful previous Volume 1 [...].
Collapse
Affiliation(s)
- Andrzej Kutner
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
12
|
Carr BP, Chen Z, Chung JHY, Wallace GG. Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review. Polymers (Basel) 2022; 14:4270. [PMID: 36297848 PMCID: PMC9609630 DOI: 10.3390/polym14204270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
As the most prevalent structural protein in the extracellular matrix, collagen has been extensively investigated for biofabrication-based applications. However, its utilisation has been impeded due to a lack of sufficient mechanical toughness and the inability of the scaffold to mimic complex natural tissues. The anisotropic alignment of collagen fibres has been proven to be an effective method to enhance its overall mechanical properties and produce biomimetic scaffolds. This review introduces the complicated scenario of collagen structure, fibril arrangement, type, function, and in addition, distribution within the body for the enhancement of collagen-based scaffolds. We describe and compare existing approaches for the alignment of collagen with a sharper focus on electro-compaction. Additionally, various effective processes to further enhance electro-compacted collagen, such as crosslinking, the addition of filler materials, and post-alignment fabrication techniques, are discussed. Finally, current challenges and future directions for the electro-compaction of collagen are presented, providing guidance for the further development of collagenous scaffolds for bioengineering and nanotechnology.
Collapse
Affiliation(s)
| | | | - Johnson H. Y. Chung
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G. Wallace
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Wegrzynowska-Drzymalska K, Mlynarczyk DT, Chelminiak-Dudkiewicz D, Kaczmarek H, Goslinski T, Ziegler-Borowska M. Chitosan-Gelatin Films Cross-Linked with Dialdehyde Cellulose Nanocrystals as Potential Materials for Wound Dressings. Int J Mol Sci 2022; 23:9700. [PMID: 36077096 PMCID: PMC9456065 DOI: 10.3390/ijms23179700] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, thin chitosan-gelatin biofilms cross-linked with dialdehyde cellulose nanocrystals for dressing materials were received. Two types of dialdehyde cellulose nanocrystals from fiber (DNCL) and microcrystalline cellulose (DAMC) were obtained by periodate oxidation. An ATR-FTIR analysis confirmed the selective oxidation of cellulose nanocrystals with the creation of a carbonyl group at 1724 cm-1. A higher degree of cross-linking was obtained in chitosan-gelatin biofilms with DNCL than with DAMC. An increasing amount of added cross-linkers resulted in a decrease in the apparent density value. The chitosan-gelatin biofilms cross-linked with DNCL exhibited a higher value of roughness parameters and antioxidant activity compared with materials cross-linked with DAMC. The cross-linking process improved the oxygen permeability and anti-inflammatory properties of both measurement series. Two samples cross-linked with DNCL achieved an ideal water vapor transition rate for wound dressings, CS-Gel with 10% and 15% addition of DNCL-8.60 and 9.60 mg/cm2/h, respectively. The swelling ability and interaction with human serum albumin (HSA) were improved for biofilms cross-linked with DAMC and DNCL. Significantly, the films cross-linked with DAMC were characterized by lower toxicity. These results confirmed that chitosan-gelatin biofilms cross-linked with DNCL and DAMC had improved properties for possible use in wound dressings.
Collapse
Affiliation(s)
- Katarzyna Wegrzynowska-Drzymalska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Halina Kaczmarek
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|