1
|
Rubin S, Agrawal A, Seewald A, Lian MJ, Gottdenker O, Villoutreix P, Baule A, Stern T, Zelzer E. Limited column formation in the embryonic growth plate implies divergent growth mechanisms during pre- and postnatal bone development. eLife 2024; 13:e95289. [PMID: 39269144 PMCID: PMC11509684 DOI: 10.7554/elife.95289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
- Würzburg Institute of Systems Immunology, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| | - Anne Seewald
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Meng-Jia Lian
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Olivia Gottdenker
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Paul Villoutreix
- Aix Marseille Univ, INSERM, MMG, UMR1251, Turing Center for Living SystemsMarseilleFrance
| | - Adrian Baule
- School of Mathematical Sciences, Queen Mary University of LondonLondonUnited Kingdom
| | - Tomer Stern
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
2
|
Amano K, Kitaoka Y, Kato S, Fujiwara M, Okuzaki D, Aikawa T, Kogo M, Iida S. Pth1r Signal in Gli1+ Cells Maintains Postnatal Cranial Base Synchondrosis. J Dent Res 2023; 102:1241-1251. [PMID: 37575041 DOI: 10.1177/00220345231184405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Cranial base synchondroses are the endochondral ossification centers for cranial base growth and thus indispensable for proper skull, brain, and midfacial development. The synchondroses are composed of mirror-image growth plates that are continuously maintained from the embryonic to postnatal stage through chondrocyte differentiation. Several factors, including Pth1r signaling, are known to control fetal synchondrosis development. However, there are currently no reports regarding any role for Pth1r signaling in postnatal cranial base and synchondrosis development. Also, the mesenchymal cells that source Pth1r signaling for synchondroses are not known. Here, we employed an inducible mouse model, a hedgehog-responsive Gli1-CreERT2 driver, focusing on the postnatal study. We performed 2 inducible protocols using Gli1-CreERT2;Tomatofl/+ mice that uncovered distinct patterning of Gli1-positive and Gli1-negative chondrocytes in the synchondrosis cartilage. Moreover, we generated Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+ mice to assess their functions in postnatal synchondrosis and found that the mutants had survived postnatally. The mutant skulls morphologically presented unambiguous phenotypes where we noticed the shortened cranial base and premature synchondrosis closure. Histologically, gradual disorganization in mutant synchondroses caused an uncommon remaining central zone between hypertrophic zones on both sides while the successive differentiation of round, flat, and hypertrophic chondrocytes was observed in control sections. These mutant synchondroses disappeared and were finally replaced by bone. Of note, the mutant fusing synchondroses lost their characteristic patterning of Gli1-positive and Gli1-negative chondrocytes, suggesting that loss of Pth1r signaling alters the distribution of hedgehog-responsive chondrocytes. Moreover, we performed laser microdissection and RNA sequencing to characterize the flat proliferative and round resting chondrocytes where we found flat chondrocytes have a characteristic feature of both chondrocyte proliferation and maturation. Taken together, these data demonstrate that Pth1r signaling in Gli1-positive cells is essential for postnatal development and maintenance in cranial base synchondroses. Our findings will elucidate previously unknown aspects of Pth1r functions in cranial biology and development.
Collapse
Affiliation(s)
- K Amano
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Y Kitaoka
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Kato
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Fujiwara
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- The Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - D Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - T Aikawa
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Kogo
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Nishimura R. Bone and Cartilage Biology. Int J Mol Sci 2023; 24:ijms24065264. [PMID: 36982339 PMCID: PMC10049210 DOI: 10.3390/ijms24065264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Recent technical and conceptual advances in molecular and cellular biology have dramatically advanced bone and cartilage biology [...]
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamdaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Ueharu H, Pan H, Hayano S, Zapien-Guerra K, Yang J, Mishina Y. Augmentation of bone morphogenetic protein signaling in cranial neural crest cells in mice deforms skull base due to premature fusion of intersphenoidal synchondrosis. Genesis 2023; 61:e23509. [PMID: 36622051 PMCID: PMC10757424 DOI: 10.1002/dvg.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023]
Abstract
Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing. Invasive surgical intervention is the current primary option to correct these structural deficiencies. Understanding molecular cellular mechanism for craniofacial development would provide novel therapeutic options for CFAs. In this study, we found that enhanced bone morphogenetic protein (BMP) signaling in cranial neural crest cells (NCCs) (P0-Cre;caBmpr1a mice) causes premature fusion of intersphenoid synchondrosis (ISS) resulting in leading to short snouts and hypertelorism. Histological analyses revealed reduction of proliferation and higher cell death in ISS at postnatal day 3. We demonstrated to prevent the premature fusion of ISS in P0-Cre;caBmpr1a mice by injecting a p53 inhibitor Pifithrin-α to the pregnant mother from E15.5 to E18.5, resulting in rescue from short snouts and hypertelorism. We further demonstrated to prevent premature fusion of cranial sutures in P0-Cre;caBmpr1a mice by injecting Pifithrin-α through E8.5 to E18.5. These results suggested that enhanced BMP-p53-induced cell death in cranial NCCs causes premature fusion of ISS and sutures in time-dependent manner.
Collapse
Affiliation(s)
- Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Karen Zapien-Guerra
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|