1
|
Xie W, Li X, Chen H, Chu J, Zhang L, Tang B, Huang W, Li L, Lin J, Dong Y. 5-Hydroxymethylcytosine Profiles of cfDNA in Urine as Diagnostic, Differential Diagnosis and Prognostic Markers for Multiple Myeloma. Cancer Med 2024; 13:e70477. [PMID: 39711442 DOI: 10.1002/cam4.70477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND An effective urine-based method for the diagnosis, differential diagnosis and prognosis of multiple myeloma (MM) has not yet been developed. Urine cell-free DNA (cfDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive "liquid biopsy" for diagnosis and monitoring of cancer. METHODS We first identified MM-specific hydroxymethylcytosine signatures by comparing 64 MM patients, 23 amyloidosis (AM) patients and 59 healthy cohort. Then, we applied a machine learning algorithm to develop diagnostic and differential diagnosis model. Finally, the prognosis of MM patients was predicted based on their survival time at the last follow-up. RESULTS We identified 11 5hmC markers using logistic regression algorithm could effectively diagnosis MM (AUC = 0.902), and achieved 85.00% specificity and 85.71% sensitivity. These 11 markers could also effectively differential diagnosis MM (AUC = 0.805) with 88.89% specificity and 73.08% sensitivity. In addition, the prognostic prediction model also effectively predicted the prognosis of patients with MM (p < 0.01), of which 4 differential markers (RAPGEF2, BRD1, TET2, TRAF3IP2) could independently predict the prognosis of MM. CONCLUSIONS Together, our findings showed the value of urine cfDNA hydroxymethylcytosine markers in the diagnosis, differential diagnosis and prognosis of MM. Meantime, our study provides a promising and completely non-invasive method for the diagnosis, differential diagnosis and prognosis prediction of MM.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| | - Xuehui Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Jinlin Chu
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| | - Wenrong Huang
- Department of Hematology, Fifth Medical Center, General Hospital of the People's Liberation Army, Beijing, People's Republic of China
| | - Linlin Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
- Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
2
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
3
|
Ancer-Rodríguez J, Gopar-Cuevas Y, García-Aguilar K, Chávez-Briones MDL, Miranda-Maldonado I, Ancer-Arellano A, Ortega-Martínez M, Jaramillo-Rangel G. Cell Proliferation and Apoptosis-Key Players in the Lung Aging Process. Int J Mol Sci 2024; 25:7867. [PMID: 39063108 PMCID: PMC11276691 DOI: 10.3390/ijms25147867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the global lifespan has increased, resulting in a higher proportion of the population over 65 years. Changes that occur in the lung during aging increase the risk of developing acute and chronic lung diseases, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung cancer. During normal tissue homeostasis, cell proliferation and apoptosis create a dynamic balance that constitutes the physiological cell turnover. In basal conditions, the lungs have a low rate of cell turnover compared to other organs. During aging, changes in the rate of cell turnover in the lung are observed. In this work, we review the literature that evaluates the role of molecules involved in cell proliferation and apoptosis in lung aging and in the development of age-related lung diseases. The list of molecules that regulate cell proliferation, apoptosis, or both processes in lung aging includes TNC, FOXM1, DNA-PKcs, MicroRNAs, BCL-W, BCL-XL, TCF21, p16, NOX4, NRF2, MDM4, RPIA, DHEA, and MMP28. However, despite the studies carried out to date, the complete signaling pathways that regulate cell turnover in lung aging are still unknown. More research is needed to understand the changes that lead to the development of age-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (J.A.-R.); (Y.G.-C.); (M.-d.-L.C.-B.); (I.M.-M.); (A.A.-A.); (M.O.-M.)
| |
Collapse
|
4
|
Li D, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Shao F, Chaipanichkul P, Yoo KH, Wei W, Okoli UA, Deng S, Ke M, Cho WC, Heavey S, Feng D. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives. Redox Biol 2024; 73:103208. [PMID: 38851002 PMCID: PMC11201350 DOI: 10.1016/j.redox.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Recently, numerous studies have reported the interaction between senescence and oxidative stress in cancer. However, there is a lack of a comprehensive understanding of the precise mechanisms involved. AIM Therefore, our review aims to summarize the current findings and elucidate by presenting specific mechanisms that encompass functional pathways, target genes, and related aspects. METHODS Pubmed and Web of Science databases were retrieved to search studies about the interaction between senescence and oxidative stress in cancer. Relevant publications in the reference list of enrolled studies were also checked. RESULTS In carcinogenesis, oxidative stress-induced cellular senescence acts as a barrier against the transformation of stimulated cells into cancer cells. However, the senescence-associated secretory phenotype (SASP) is positively linked to tumorigenesis. In the cancer progression stage, targeting specific genes or pathways that promote oxidative stress-induced cellular senescence can suppress cancer progression. In terms of treatment, many current clinical therapies combine with novel drugs to overcome resistance and reduce side effects by attenuating oxidative stress-induced senescence. Notably, emerging drugs control cancer development by enhancing oxidative stress-induced senescence. These studies highlight the complacted effects of the interplay between oxidative stress and senescence at different cancer stages and among distinct cell populations. Future research should focus on characterizing the roles of distinct senescent cell types in various tumor stages and identifying the specific components of SASP. CONCLUDSION We've summarized the mechanisms of senescence and oxidative stress in cancer and provided illustrative figures to guide future research in this area.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | | | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
5
|
Malila Y, Uengwetwanit T, Sanpinit P, Songyou W, Srimarut Y, Kunhareang S. Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds. Anim Biosci 2024; 37:61-73. [PMID: 37905317 PMCID: PMC10766454 DOI: 10.5713/ab.23.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). METHODS Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35°C±1°C for 6 h, followed by 26°C±1°C for 18 h) for 20 days. Control group was raised under a constant temperature of 26°C±1°C. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermalstressed groups were compared within the same breeds. RESULTS Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. CONCLUSION The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Pornnicha Sanpinit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Wipakarn Songyou
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Sajee Kunhareang
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002,
Thailand
| |
Collapse
|
6
|
Fang T, Wang F, Zhang R, Du ZQ, Yang CX. Single-cell RNA sequencing reveals blastomere heterogeneity of 2-cell embryos in pigs. Reprod Domest Anim 2023; 58:1393-1403. [PMID: 37568261 DOI: 10.1111/rda.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
In mammals, single blastomeres from as early as 2-cell embryos demonstrate heterogeneous developmental capacity and fate decision into different cell lineages. However, mechanisms underlying blastomere heterogeneity of 2-cell embryos remain largely unresolved. Here, we analysed the molecular heterogeneity of full-length mRNAs and their 3'UTR regions, based on the single-cell RNA-seq data of pig 2-cell embryos generated from in vivo fertilization (in vivo), in vitro fertilization (in vitro) and parthenogenetic activation (PA), respectively. First, unsupervised clustering helped discover two different groups of blastomeres for 2-cell pig embryos. Between these two groups of blastomeres in pig 2-cell embryos, 35, 301 and 428 full-length mRNAs respectively in in vivo, in vitro and PA embryo types were identified to be differentially expressed (padj ≤ .05 and |log2 [fold change]| ≥1) (DE mRNAs), while 92, 89 and 42 mRNAs were shown to be with significantly different 3'UTR lengths (3'UTR DE) (padj ≤ .05). Gene enrichment for both DE mRNAs and 3'UTR DE mRNAs found multiple signalling pathways, including cell cycle, RNA processing. Few numbers of common DE mRNAs and 3'UTR DE mRNAs existed between in vitro and in vivo blastomeres derived from 2-cell embryos, indicating the larger differences between in vitro and in vivo fertilized embryos. Integrative genomics viewer analysis further identified that 3'UTRs of HSDL2 and SGTA (in vivo), FAM204A and phosphoserine phosphatase (in vitro), PRPF40A and RPIA (PA) had >100 nt average length changes. Moreover, numbers and locations of regulatory elements (polyadenylation site, cytoplasmic polyadenylation element and microRNA binding sites) within 3'UTRs of these DE mRNAs were predicted. These results indicate that molecular heterogeneity existed among blastomeres from different types of pig 2-cell embryos, providing useful information and novel insights into future functional investigation on its relationship with the subsequent embryo development and differentiation.
Collapse
Affiliation(s)
- Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Fang Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Rong Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Shen WC, Yuh CH, Lu YT, Lin YH, Ching TT, Wang CY, Wang HD. Reduced Ribose-5-Phosphate Isomerase A-1 Expression in Specific Neurons and Time Points Promotes Longevity in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:antiox12010124. [PMID: 36670987 PMCID: PMC9854458 DOI: 10.3390/antiox12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.
Collapse
Affiliation(s)
- Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Mioali Country 35053, Taiwan
| | - Yu-Ting Lu
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memory Hospital, Linkou Main Branch, Chang Gung University, Taoyuan 33305, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, HsinChu 300044, Taiwan
- Correspondence: ; Tel.: +886-3-5742470
| |
Collapse
|