1
|
Park S, Cho ES, Kim CH, Lee S, Jeong YD, Park M, Kim D, Seo D, Kim YH, Hochi S, Choi I, Chung HJ. Detection of sow pregnancy in day-20 urine samples using monoclonal antibody against synthesized porcine early pregnancy factor: Preliminary results. Theriogenology 2024; 229:23-29. [PMID: 39142067 DOI: 10.1016/j.theriogenology.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Early diagnosis of pregnancy is directly related to cost-effective livestock production. We produced a rat monoclonal antibody (mAb) against synthesized porcine early pregnancy factor (pEPF) using conventional hybridoma technology and used it as a tool for the detection of early pregnancy in Duroc sows. The rat pEPF-mAb showed reactivity to uterine tissues of pregnant sows 20 or 30 days post-mating (day 0 defined as the day of mating) and non-pregnant sows (confirmed signs of estrus) in western blotting. Immunohistochemical analysis confirmed that pEPF was located in the stromal and grand epithelial tissues of pregnant sows 20 or 30 days post-mating. In the enzyme-linked immunosorbent assay, pEPF expression in urine and blood showed similar results, with the highest expression observed in pregnant sows 20 days post-mating, whereas there was no significant difference in expression levels between non-pregnant sows and pregnant sows 30 days post-mating. The pEPF-mAb-based pregnancy diagnostic kit can be applied to pig urine samples non-invasively collected at 20 days post-mating with 70 % accuracy. Further improvements to the kit's diagnostic performance may lead to substantial benefits for the swine industry, facilitating more efficient and accurate reproductive management.
Collapse
Affiliation(s)
- Sungwoo Park
- Swine Science Division, National Institute of Animal Science, Cheonan-si, 31000, Republic of Korea; College of Agriculture and Life Sciences, Chungnam National University, Daejeon-si, 34134, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, Cheonan-si, 31000, Republic of Korea
| | - Chae-Hyun Kim
- Swine Science Division, National Institute of Animal Science, Cheonan-si, 31000, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Yong-Dae Jeong
- Swine Science Division, National Institute of Animal Science, Cheonan-si, 31000, Republic of Korea
| | - Myunghum Park
- R&D Center, TNT Research Co., Sejeong-si, 30141, Republic of Korea
| | - Dongjun Kim
- R&D Center, TNT Research Co., Sejeong-si, 30141, Republic of Korea
| | - Dongwon Seo
- R&D Center, TNT Research Co., Sejeong-si, 30141, Republic of Korea
| | - Yeon-Ho Kim
- Swine Science Division, National Institute of Animal Science, Cheonan-si, 31000, Republic of Korea
| | - Shinichi Hochi
- Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | - Inchul Choi
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon-si, 34134, Republic of Korea.
| | - Hak-Jae Chung
- R&D Center, TNT Research Co., Sejeong-si, 30141, Republic of Korea.
| |
Collapse
|
2
|
Hang C, Zu L, Luo X, Wang Y, Yan L, Zhang Z, Le K, Huang Y, Ye L, Ying Y, Chen K, Xu X, Lv Q, Du L. Ddx5 Targeted Epigenetic Modification of Pericytes in Pulmonary Hypertension After Intrauterine Growth Restriction. Am J Respir Cell Mol Biol 2024; 70:400-413. [PMID: 38301267 DOI: 10.1165/rcmb.2023-0244oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
Newborns with intrauterine growth restriction (IUGR) have a higher likelihood of developing pulmonary arterial hypertension (PAH) in adulthood. Although there is increasing evidence suggesting that pericytes play a role in regulating myofibroblast transdifferentiation and angiogenesis in malignant and cardiovascular diseases, their involvement in the pathogenesis of IUGR-related pulmonary hypertension and the underlying mechanisms remain incompletely understood. To address this issue, a study was conducted using a Sprague-Dawley rat model of IUGR-related pulmonary hypertension. Our investigation revealed increased proliferation and migration of pulmonary microvascular pericytes in IUGR-related pulmonary hypertension, accompanied by weakened endothelial-pericyte interactions. Through whole-transcriptome sequencing, Ddx5 (DEAD-box protein 5) was identified as one of the hub genes in pericytes. DDX5, a member of the RNA helicase family, plays a role in the regulation of ATP-dependent RNA helicase activities and cellular function. MicroRNAs have been implicated in the pathogenesis of PAH, and microRNA-205 (miR-205) regulates cell proliferation, migration, and angiogenesis. The results of dual-luciferase reporter assays confirmed the specific binding of miR-205 to Ddx5. Mechanistically, miR-205 negatively regulates Ddx5, leading to the degradation of β-catenin by inhibiting the phosphorylation of Gsk3β at serine 9. In vitro experiments showed the addition of miR-205 effectively ameliorated pericyte dysfunction. Furthermore, in vivo experiments demonstrated that miR-205 agomir could ameliorate pulmonary hypertension. Our findings indicated that the downregulation of miR-205 expression mediates pericyte dysfunction through the activation of Ddx5. Therefore, targeting the miR-205/Ddx5/p-Gsk3β/β-catenin axis could be a promising therapeutic approach for IUGR-related pulmonary hypertension.
Collapse
Affiliation(s)
| | - Lu Zu
- Department of Neonatology and
| | - Xiaofei Luo
- Department of Pediatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China; and
| | - Yu Wang
- Department of Neonatology and
| | - Lingling Yan
- Department of Pediatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China; and
| | | | - Kaixing Le
- Academy of Pediatrics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | | | | | | | | | - Xuefeng Xu
- Department of Rheumatology, Immunology, and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, People's Republic of China
| | | | | |
Collapse
|
3
|
Reiisi S, Ahmadi K. Bioinformatics analysis of a disease-specific lncRNA-miRNA-mRNA regulatory network in recurrent spontaneous abortion (RSA). Arch Gynecol Obstet 2024; 309:1609-1620. [PMID: 38310583 DOI: 10.1007/s00404-023-07356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND This study investigated the molecular mechanisms of long non-coding RNAs (lncRNAs) in RSA using the lncRNA-miRNA-mRNA regulatory network. METHODS The present study obtained expression datasets of long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs) from blood samples of individuals with unexplained recurrent spontaneous abortion (RSA) and healthy controls. Differentially expressed lncRNAs (DELs), mRNAs (DEMs), and miRNAs (DEmiRs) were identified. A regulatory network comprising lncRNA, miRNA, and mRNA was constructed, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEM. Also, a protein-protein interaction (PPI) network was made and key genes were identified. RESULTS A total of 57 DELs, 212 DEmiRs, and 301 DEMs regarding RSA were identified. Later analysis revealed a lncRNA-miRNA-mRNA network comprising nine lncRNAs, 14 miRNAs, and 65 mRNAs. Then, the ceRNA network genes were subjected to functional enrichment and pathway analysis, which showed their association with various processes, such as cortisol and thyroid hormone synthesis and secretion, human cytomegalovirus infection, and parathyroid hormone synthesis. In addition, ten hub genes (ITGB3, GNAI2, GNAS, SRC, PLEC, CDC42, RHOA, RAC1, CTNND1, and FN1) were identified based on the PPI network results. CONCLUSION In summary, the outcomes of our study provided some data regarding the alteration genes involved in RSA pathogenic mechanism via the lncRNA-miRNA-mRNA network and reveal the possibility of identifying new lncRNAs and miRNAs as promising molecular biomarkers.
Collapse
Affiliation(s)
- Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Kambiz Ahmadi
- Department of Computer Science, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
4
|
Wang W, Sun Y, Xu P, Liang H, Wang Y, Deng D, Cao J, Yu M. Epigenomic analysis of the myometrium during late implantation revealed regulatory elements in genes related to the cellular zinc homeostasis pathway in pigs. Genomics 2024; 116:110768. [PMID: 38128703 DOI: 10.1016/j.ygeno.2023.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The myometrium, composed of the inner circular muscle (CM) and outer longitudinal muscle (LM), is crucial in establishing and maintaining early pregnancy. However, the molecular mechanisms involved are not well understood. In this study, we identified the transcriptomic features of the CM and LM collected from the mesometrial (M) and anti-mesometrial (AM) sides of the pig uterus on day 18 of pregnancy during the placentation initiation phase. Some genes in the cellular zinc ion level regulatory pathways (MT-1A, MT-1D, MT-2B, SLC30A2, and SLC39A2) were spatially and highly enriched in uterine CM at the mesometrial side. In addition, the histone modification profiles of H3K27ac and H3K4me3 in uterine CM and LM collected from the mesometrial side were characterized. Genomic regions associated with the expression of genes regulating the cellular zinc ion level were detected. Moreover, six highly linked variants in the H3K27ac-enriched region of the pig SLC30A2 gene were identified and found to be significantly associated with the total number born at the second parity (P < 0.05). In conclusion, the genes in the pathways of cellular zinc homeostasis and their regulatory elements identified have implications for pig reproduction trait improvement and warrant further investigations.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yan Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Pengfei Xu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hao Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yue Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dadong Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianhua Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
5
|
Effect of miR-143-3p from Extracellular Vesicles of Porcine Uterine Luminal Fluid on Porcine Trophoblast Cells. Animals (Basel) 2022; 12:ani12233402. [PMID: 36496922 PMCID: PMC9736583 DOI: 10.3390/ani12233402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) in uterine luminal fluid (ULF) can reportedly affect the proliferation and migration function of porcine trophoblast cells (PTr2 cells) by mediating the maternal-fetal exchange of information. miR-143-3p is considered a crucial miRNA in early pregnancy in mammals; however, little is currently known about how it regulates the function of PTr2 cells. This study aimed to investigate the effects of ssc-miR-143-3p in ULF-EVs on the function of PTr2 cells during porcine embryo implantation. The uptake of ULF-EVs by PTr2 cells was confirmed, which significantly increased the expression of ssc-miR-143-3p. Ssc-miR-143-3p was found to facilitate the proliferation and migration of PTr2 cells in the CCK-8, EdU and wound-closure assays, while the opposite findings were observed after the knockdown of ssc-miR-143-3p. Bioinformatics analysis and the luciferase reporter assay showed that glycerol-3 phosphate dehydrogenase 2 (GDP2) was directly targeted by miR-143-3p. Inhibition of miR-143-3p was validated in mice to inhibit embryo implantation. In summary, ssc-miR-143-3p in ULF-EVs affects the proliferation and migration of PTr2 cells by mediating GPD2, thereby affecting embryo implantation.
Collapse
|