1
|
Chen Z, Wang X, Teng Z, Huang J, Mo J, Qu C, Wu Y, Liu Z, Liu F, Xia K. A comprehensive assessment of the association between common drugs and psychiatric disorders using Mendelian randomization and real-world pharmacovigilance database. EBioMedicine 2024; 107:105314. [PMID: 39191171 PMCID: PMC11400609 DOI: 10.1016/j.ebiom.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Medications prescribed for chronic diseases can lead to short-term neuropsychiatric symptoms, but their long-term effects on brain structures and psychiatric conditions remain unclear. METHODS We comprehensively analyzed the FDA Adverse Event Reporting System database and conducted drug target Mendelian Randomization (MR) studies on six categories of common drugs, 477 brain imaging-derived phenotypes (IDPs) and eight psychiatric disorders. Genetic instruments were extracted from expression quantitative trait loci (eQTLs) in blood, brain, and other target tissues, protein quantitative trait loci (pQTLs) in blood, and genome-wide association studies (GWAS) of hemoglobin and cholesterol. Summary statistics for brain IDPs, psychiatric disorders, and gut microbiome were obtained from the BIG40, Psychiatric Genomics Consortium, and MiBioGen. A two-step MR and mediation analysis were employed to screen possible mediators of drug-IDP effects from 119 gut microbiota genera and identify their mediation proportions. FINDINGS Among 19 drug classes, six drugs were found to be associated with higher risks of psychiatric adverse events, while 11 drugs were associated with higher risks of gastrointestinal adverse events in the FAERS analysis. We identified ten drug-psychiatric disorder associations, 202 drug-IDP associations, 16 drug-microbiota associations, and four drug-microbiota-IDP causal links. For example, PPARG activation mediated HbA1c reduction caused a higher risk of bipolar disorder (BD) II. Genetically proxied GLP-1R agonists were significantly associated with an increase in the volume of the CA3-head of the right hippocampus and the area of the left precuneus cortex, both of which have been shown to correlate with cognition in previous studies. INTERPRETATION Common drugs may affect brain structure and risk of psychiatric disorder. Oral medications in particular may exert some of these effects by influencing gut microbiota. This study calls for greater attention to be paid to the neuropsychiatric adverse effects of drugs and encourages drug repurposing. FUNDING National Natural Science Foundation of China (grant No. 82330035, 82130043, 82172685, and 82001223), National Natural Science Foundation of Hunan Province (grant No. 2021SK1010), and the Science Foundation for Distinguished Young Scholars of Changsha (grant No. kq2209006).
Collapse
Affiliation(s)
- Zhuohui Chen
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Psychiatry, Hunan Brain Hospital (Hunan Second People's Hospital), Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianzhong Mo
- The Third Hospital of Changsha, Changsha, Hunan, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Yinghua Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
| | - Fangkun Liu
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Kun Xia
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Ramos-Regalado L, Alcover S, Badimon L, Vilahur G. The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment. Cells 2024; 13:1125. [PMID: 38994977 PMCID: PMC11240659 DOI: 10.3390/cells13131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient's metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner.
Collapse
Affiliation(s)
- Lisaidy Ramos-Regalado
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sebastià Alcover
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lina Badimon
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Kontush A, Martin M, Brites F. Sweet swell of burning fat: emerging role of high-density lipoprotein in energy homeostasis. Curr Opin Lipidol 2023; 34:235-242. [PMID: 37797204 DOI: 10.1097/mol.0000000000000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Metabolism of lipids and lipoproteins, including high-density lipoprotein (HDL), plays a central role in energy homeostasis. Mechanisms underlying the relationship between energy homeostasis and HDL however remain poorly studied. RECENT FINDINGS Available evidence reveals that HDL is implicated in energy homeostasis. Circulating high-density lipoprotein-cholesterol (HDL-C) levels are affected by energy production, raising with increasing resting metabolic rate. Lipolysis of triglycerides as a source of energy decreases plasma levels of remnant cholesterol, increases levels of HDL-C, and can be cardioprotective. Switch to preferential energy production from carbohydrates exerts opposite effects. SUMMARY Low HDL-C may represent a biomarker of inefficient energy production from fats. HDL-C-raising can be beneficial when it reflects enhanced energy production from burning fat.
Collapse
Affiliation(s)
- Anatol Kontush
- Sorbonne University, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S 1166, Paris, France
| | - Maximiliano Martin
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Schoch L, Alcover S, Padró T, Ben-Aicha S, Mendieta G, Badimon L, Vilahur G. Update of HDL in atherosclerotic cardiovascular disease. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:297-314. [PMID: 37940388 DOI: 10.1016/j.arteri.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Epidemiologic evidence supported an inverse association between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major cardiovascular risk factor and postulating diverse HDL vascular- and cardioprotective functions beyond their ability to drive reverse cholesterol transport. However, the failure of several clinical trials aimed at increasing HDL-C in patients with overt cardiovascular disease brought into question whether increasing the cholesterol cargo of HDL was an effective strategy to enhance their protective properties. In parallel, substantial evidence supports that HDLs are complex and heterogeneous particles whose composition is essential for maintaining their protective functions, subsequently strengthening the "HDL quality over quantity" hypothesis. The following state-of-the-art review covers the latest understanding as per the roles of HDL in ASCVD, delves into recent advances in understanding the complexity of HDL particle composition, including proteins, lipids and other HDL-transported components and discusses on the clinical outcomes after the administration of HDL-C raising drugs with particular attention to CETP (cholesteryl ester transfer protein) inhibitors.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Sebastián Alcover
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
| | | | - Guiomar Mendieta
- Cardiology Unit, Cardiovascular Clinical Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain; CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; CiberCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Schoch L, Sutelman P, Suades R, Badimon L, Moreno-Indias I, Vilahur G. The gut microbiome dysbiosis is recovered by restoring a normal diet in hypercholesterolemic pigs. Eur J Clin Invest 2023; 53:e13927. [PMID: 36453873 DOI: 10.1111/eci.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Gut microbiota is thought to modulate cardiovascular risk. However, the effect of cardiovascular primary prevention strategies on gut microbiota remains largely unknown. This study investigates the impact of diet and rosuvastatin interventions on gut microbiota composition in hypercholesterolemic pigs and associated potential changes in host metabolic pathways. METHODS Diet-induced hypercholesterolemic pigs (n = 32) were randomly distributed to receive one of the following 30-day interventions: (I) continued hypercholesterolemic diet (HCD; n = 9), (II) normocholesterolemic diet (NCD; n = 8), (III) continued HCD plus 40 mg rosuvastatin/daily (n = 7), or (IV) NCD plus 40 mg rosuvastatin/daily (n = 8). Faeces were collected at study endpoint for characterisation of the gut microbiome and metabolic profile prediction (PICRUSt2). TMAO levels and biochemical parameters were determined. RESULTS Principal coordinate analyses (beta-diversity) showed clear differences in the microbiota of NCD vs HCD pigs (PERMANOVA, p = .001). NCD-fed animals displayed significantly higher alpha-diversity, which inversely correlated with total cholesterol and LDL-cholesterol levels (p < .0003). NCD and HCD animals differed in the abundance of 12 genera (ANCOM; p = .001 vs HCD), and PICRUSt2 analysis revealed detrimental changes in HCD-related microbiota metabolic capacities. These latter findings were associated with a significant fivefold increase in TMAO levels in HCD-fed pigs (p < .0001 vs NCD). The addition of a 30-day rosuvastatin treatment to either of the diets exerted no effects in microbiota nor lipid profile. CONCLUSION In hypercholesterolemic animals, the ingestion of a low-fat diet for 30 days modifies gut microbiota composition in favour of alpha-diversity and towards a healthy metabolic profile, whereas rosuvastatin treatment for this period exerts no effects.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Pablo Sutelman
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, Malaga, Spain
- CiberOBN, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Bertocci F, Mannino G. Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs-A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods 2023; 12:571. [PMID: 36766100 PMCID: PMC9914002 DOI: 10.3390/foods12030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Due to environmental and human factors, there is a growing amount of agri-food waste worldwide. The European Commission is incentivizing a zero-waste policy by 2025, pushing to find a "second life" for at least the avoidable ones. In this review, after summarizing the nutritional values of pork and the importance of its inclusion in human diet, a phylogenetic analysis was conducted to investigate potential differences in the structure and activity of HMGCR, which is a key enzyme in cholesterol metabolism. In addition, a bibliometric analysis combined with visual and meta-analytical studies on 1047 scientific articles was conducted to understand whether the inclusion of agro-food waste could affect the growth performance of pigs and reduce cholesterol levels in pork. Although some critical issues were highlighted, the overall data suggest a modern and positive interest in the reuse of agri-food waste as swine feed. However, although interesting and promising results have been reported in several experimental trials, further investigation is needed, since animal health and meat quality are often given marginal consideration.
Collapse
Affiliation(s)
- Filippo Bertocci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80134 Naples, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
7
|
Dietrich E, Jomard A, Osto E. Crosstalk between high-density lipoproteins and endothelial cells in health and disease: Insights into sex-dependent modulation. Front Cardiovasc Med 2022; 9:989428. [PMID: 36304545 PMCID: PMC9594152 DOI: 10.3389/fcvm.2022.989428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Intense research in vascular biology has advanced our knowledge of molecular mechanisms of its onset and progression until complications; however, several aspects of the patho-physiology of atherosclerosis remain to be further elucidated. Endothelial cell homeostasis is fundamental to prevent atherosclerosis as the appearance of endothelial cell dysfunction is considered the first pro-atherosclerotic vascular modification. Physiologically, high density lipoproteins (HDLs) exert protective actions for vessels and in particular for ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute to the regulation of vascular lipid metabolism, and have immune-modulatory, anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent differences are increasingly recognized as important, although not fully elucidated, factors in cardiovascular health and disease patho-physiology. In this review, we highlight the importance of sex hormones and sex-specific gene expression in the regulation of HDL and EC cross-talk and their contribution to cardiovascular disease.
Collapse
Affiliation(s)
- Elisa Dietrich
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Anne Jomard
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|