1
|
Sandaruwan HHPB, Manatunga DC, N Liyanage R, Costha NP, Dassanayake RS, Wijesinghe RE, Zhou Y, Liu Y. Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:408-431. [PMID: 39564777 DOI: 10.1039/d4ay01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns. Current practices utilize litmus, nitrazine strips, bromothymol blue, fluorescent dyes, and micro-combination glass probes to detect ocular pH. However, these methods have inherent drawbacks, leading to inaccurate pH measurements, less sensitivity, photodegradation, limited pH range, and longer response time. Hence, there is a tremendous necessity for developing relatively simple, accurate, precise ocular pH detection methods. The current review aims to provide comprehensive coverage of the conventional practices of ocular pH measurement during accidental chemical burns, highlighting their strengths and weaknesses. Besides, it delves into cutting-edge technologies, including pH-sensing contact lenses, microfluidic contact lenses, fluorescent scleral contact lenses, fiber optic pH technology, and pH-sensitive thin films. The study meticulously examines the reported work since 2000. The collected data have also helped propose future directions, and the research gap needs to be filled to provide a more rapid, sensitive, and accurate measurement of ocular pH in eye clinics. For the first time, this review consolidates current techniques and recent advancements in ocular pH detection, offering a strategic overview to propel ophthalmic-related research forward and enhance ocular burn management during a chemical spillage.
Collapse
Affiliation(s)
- H H P Benuwan Sandaruwan
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10200, Sri Lanka
| | | | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Ruchire Eranga Wijesinghe
- Center for Excellence in Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
2
|
Zhou J, Pathak JL, Wu L, Chen B, Cao T, Wei W, Wu X, Chen G, Watanabe N, Li X, Li J. Downregulated GPX4 in salivary gland epithelial cells contributes to salivary secretion dysfunction in Sjogren's syndrome via lipid ROS/pSTAT4/AQP5 axis. Free Radic Biol Med 2024; 218:1-15. [PMID: 38574973 DOI: 10.1016/j.freeradbiomed.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.
Collapse
Affiliation(s)
- Jiannan Zhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Lihong Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Bo Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Tingting Cao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wei Wei
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xiaodan Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Guiping Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Nobumoto Watanabe
- Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| | - Jiang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
3
|
Cao T, Zhou J, Liu Q, Mao T, Chen B, Wu Q, Wang L, Pathak JL, Watanabe N, Li J. Interferon-γ induces salivary gland epithelial cell ferroptosis in Sjogren's syndrome via JAK/STAT1-mediated inhibition of system Xc . Free Radic Biol Med 2023; 205:116-128. [PMID: 37286044 DOI: 10.1016/j.freeradbiomed.2023.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The elevated level of interferon-γ (IFN-γ) in Sjogren's syndrome (SS) triggers salivary gland epithelial cells (SGEC) death. However, the underlying mechanisms of IFN-γ-induced SGEC death modes are still not fully elucidated. We found that IFN-γ triggers SGEC ferroptosis via Janus kinase/signal transducer and activator of transcription 1 (JAK/STAT1)-mediated inhibition of cystine-glutamate exchanger (System Xc-). Transcriptome analysis revealed that ferroptosis-related markers are differentially expressed in SS human and mouse salivary glands with distinct upregulation of IFN-γ and downregulation of glutathione peroxidase 4 (GPX4) and aquaporin 5 (AQP5). Inducing ferroptosis or IFN-γ treatment in the Institute of cancer research (ICR) mice aggravated and inhibition of ferroptosis or IFN-γ signaling in SS model non-obese diabetic (NOD) mice alleviated ferroptosis in the salivary gland and SS symptoms. IFN-γ activated STAT1 phosphorylation and downregulated system Xc- components solute carrier family 3 member 2 (SLC3A2), glutathione, and GPX4 thereby triggering ferroptosis in SGEC. JAK or STAT1 inhibition in SGEC rescued IFN-γ-downregulated SLC3A2 and GPX4 as well as IFN-γ-induced cell death. Our results indicate the role of ferroptosis in SS-related death of SGEC and SS pathogenicity.
Collapse
Affiliation(s)
- Tingting Cao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jiannan Zhou
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qianwen Liu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tianjiao Mao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Bo Chen
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qingqing Wu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Lijing Wang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan; Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|