1
|
Marrero-Rodríguez D, Moscona-Nissan A, Sidauy-Adissi J, Haidenberg-David F, Jonguitud-Zumaya E, de Jesus Chávez-Vera L, Martinez-Mendoza F, Taniguchi-Ponciano K, Mercado M. The molecular biology of sporadic acromegaly. Best Pract Res Clin Endocrinol Metab 2024; 38:101895. [PMID: 38641464 DOI: 10.1016/j.beem.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
GH-secreting tumors represent 15 % to 20 % of all pituitary neuroendocrine tumors (pitNETs), of which 95 % occur in a sporadic context, without an identifiable inherited cause. Recent multi-omic approaches have characterized the epigenomic, genomic, transcriptomic, proteomic and kynomic landscape of pituitary tumors. Transcriptomic analysis has allowed us to discover specific transcription factors driving the differentiation of pituitary tumors and gene expression patterns. GH-secreting, along with PRL- and TSH-secreting pitNETs are driven by POU1F1; ACTH-secreting tumors are determined by TBX19; and non-functioning tumors, which are predominantly of gonadotrope differentiation are conditioned by NR5A1. Upregulation of certain miRNAs, such as miR-107, is associated with tumor progression, while downregulation of others, like miR-15a and miR-16-1, correlates with tumor size reduction. Additionally, miRNA expression profiles are linked to treatment resistance and clinical outcomes, providing insights into potential therapeutic targets. Specific somatic mutations in GNAS, PTTG1, GIPR, HGMA2, MAST and somatic variants associated with cAMP, calcium signaling, and ATP pathways have also been associated with the development of acromegaly. This review focuses on the oncogenic mechanisms by which sporadic acromegaly can develop, covering a complex series of molecular alterations that ultimately alter the balance between proliferation and apoptosis, and dysregulated hormonal secretion.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Alberto Moscona-Nissan
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Jessica Sidauy-Adissi
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Fabian Haidenberg-David
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Esbeydi Jonguitud-Zumaya
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Leonel de Jesus Chávez-Vera
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Florencia Martinez-Mendoza
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Keiko Taniguchi-Ponciano
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico.
| | - Moises Mercado
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico.
| |
Collapse
|
2
|
Luo M, Yu J, Tang R. Immunological signatures and predictive biomarkers for first-generation somatostatin receptor ligand resistance in Acromegaly. J Neurooncol 2024; 167:415-425. [PMID: 38441839 DOI: 10.1007/s11060-024-04620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Predicting resistance to first-generation Somatostatin Receptor Ligands (fg-SRL) in Acromegaly patients remains an ongong challenge. Tumor-associated immune components participate in various pathological processes, including drug-resistance. We aimed to identify the immune components involved in resistance of fg-SRL, and to investigate biomarkers that can be targeted to treat those drug-resistant Acromegaly. METHODS We conducted a retrospective study involving 35 Acromegaly patients with somatotropinomas treated postoperatively with fg-SRL. Gathering clinicopathological data, SSTR2 expression, and immunological profiles, we utilized univariate, binary logistic regression, and ROC analyses to assess their predictive roles in fg-SRL resistance. Spearman correlation analysis further examined interactions among interested characteristics. RESULTS 19 patients (54.29%) exhibited resistance to postoperative fg-SRL. GH level at diagnosis, preoperative tumor volume, T2WI-MRI intensity, granularity, PD-L1, SSTR2, and CD8 + T cell infiltration showed association with clinical outcomes of fg-SRL. Notably, T2WI-MRI hyperintensity, PD-L1-IRS > 7, CD8 + T cell infiltration < 14.8/HPF, and SSTR2-IRS < 5.4 emerged as reliable predictors for fg-SRL resistance. Correlation analysis highlighted a negative relationship between PD-L1 expression and CD8 + T cell infiltration, while showcasing a positive correlation with preoperative tumor volume of somatotropinomas. Additionally, 5 patients with fg-SRL resistance underwent re-operation were involved. Following fg-SRL treatment, significant increases in PD-L1 and SSTR5 expression were observed, while SSTR2 expression decreased in somatotropinoma. CONCLUSION PD-L1 expression and CD8 + T cell infiltration, either independently or combined with SSTR2 expression and T2WI-MRI intensity, could form a predictive model guiding clinical decisions on fg-SRL employment. Furthermore, targeting PD-L1 through immunotherapy and embracing second-generations of SRL with higher affinity to SSTR5 represent promising strategies to tackle fg-SRL resistance in somatotropinomas.
Collapse
Affiliation(s)
- Mei Luo
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiangfan Yu
- Department of Pediatric Dermatology, Dermatology Hospital of Southern Medical University, 510091, Guangzhou, China
| | - Rui Tang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Systemic Autoimmune Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Ma YR, Gao W, Wang HQ, Zhao PS, Zhang YX, Wei FH, Jiang H, Zhang JB, Yuan B, Gao F. EGF-driven EGFR/miR-27b-3p/FOXO1 promotes rat FSH synthesis and secretion. FASEB J 2024; 38:e23469. [PMID: 38358361 DOI: 10.1096/fj.202301970r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.
Collapse
Affiliation(s)
- Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
4
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Störmann S, Schilbach K. Delving into Acromegaly. J Clin Med 2023; 12:1654. [PMID: 36836189 PMCID: PMC9966199 DOI: 10.3390/jcm12041654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Acromegaly is a rare and disabling disease with some distinct and striking clinical features that have fascinated (and frightened) laypeople and medical experts alike throughout history [...].
Collapse
Affiliation(s)
- Sylvère Störmann
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Ziemssenstr. 5, 80336 München, Germany
| | | |
Collapse
|