1
|
Vishnevsky OV, Bocharnikov AV, Ignatieva EV. Peak Scores Significantly Depend on the Relationships between Contextual Signals in ChIP-Seq Peaks. Int J Mol Sci 2024; 25:1011. [PMID: 38256085 PMCID: PMC10816497 DOI: 10.3390/ijms25021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) is a central genome-wide method for in vivo analyses of DNA-protein interactions in various cellular conditions. Numerous studies have demonstrated the complex contextual organization of ChIP-seq peak sequences and the presence of binding sites for transcription factors in them. We assessed the dependence of the ChIP-seq peak score on the presence of different contextual signals in the peak sequences by analyzing these sequences from several ChIP-seq experiments using our fully enumerative GPU-based de novo motif discovery method, Argo_CUDA. Analysis revealed sets of significant IUPAC motifs corresponding to the binding sites of the target and partner transcription factors. For these ChIP-seq experiments, multiple regression models were constructed, demonstrating a significant dependence of the peak scores on the presence in the peak sequences of not only highly significant target motifs but also less significant motifs corresponding to the binding sites of the partner transcription factors. A significant correlation was shown between the presence of the target motifs FOXA2 and the partner motifs HNF4G, which found experimental confirmation in the scientific literature, demonstrating the important contribution of the partner transcription factors to the binding of the target transcription factor to DNA and, consequently, their important contribution to the peak score.
Collapse
Affiliation(s)
- Oleg V. Vishnevsky
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Andrey V. Bocharnikov
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Elena V. Ignatieva
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
2
|
Bogomolov A, Zolotareva K, Filonov S, Chadaeva I, Rasskazov D, Sharypova E, Podkolodnyy N, Ponomarenko P, Savinkova L, Tverdokhleb N, Khandaev B, Kondratyuk E, Podkolodnaya O, Zemlyanskaya E, Kolchanov NA, Ponomarenko M. AtSNP_TATAdb: Candidate Molecular Markers of Plant Advantages Related to Single Nucleotide Polymorphisms within Proximal Promoters of Arabidopsis thaliana L. Int J Mol Sci 2024; 25:607. [PMID: 38203780 PMCID: PMC10779315 DOI: 10.3390/ijms25010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The mainstream of the post-genome target-assisted breeding in crop plant species includes biofortification such as high-throughput phenotyping along with genome-based selection. Therefore, in this work, we used the Web-service Plant_SNP_TATA_Z-tester, which we have previously developed, to run a uniform in silico analysis of the transcriptional alterations of 54,013 protein-coding transcripts from 32,833 Arabidopsis thaliana L. genes caused by 871,707 SNPs located in the proximal promoter region. The analysis identified 54,993 SNPs as significantly decreasing or increasing gene expression through changes in TATA-binding protein affinity to the promoters. The existence of these SNPs in highly conserved proximal promoters may be explained as intraspecific diversity kept by the stabilizing natural selection. To support this, we hand-annotated papers on some of the Arabidopsis genes possessing these SNPs or on their orthologs in other plant species and demonstrated the effects of changes in these gene expressions on plant vital traits. We integrated in silico estimates of the TBP-promoter affinity in the AtSNP_TATAdb knowledge base and showed their significant correlations with independent in vivo experimental data. These correlations appeared to be robust to variations in statistical criteria, genomic environment of TATA box regions, plants species and growing conditions.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Sergey Filonov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Bato Khandaev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk 630501, Novosibirsk Region, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| |
Collapse
|
3
|
Zhu SY, Ge W, Zhang H. Diagnostic and prognostic implications of non-high-density lipoprotein cholesterol and homocysteine levels for cognitive impairment in thalamic infarction. World J Psychiatry 2023; 13:985-994. [PMID: 38186727 PMCID: PMC10768482 DOI: 10.5498/wjp.v13.i12.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Patients with thalamic infarction experience abnormal blockages of multinucleated vessels, affecting the body and thereby the thalamus. Most patients with thalamic infarction have an adverse prognosis, which seriously affects their safety. Therefore, it is essential to analyze the independent risk factors that influence the prognosis of patients with thalamic infarction and develop corresponding preventive measures. AIM To explore the effect of non-high-density lipoprotein cholesterol (non-HDL-C) and Homocysteine (Hcy) levels in cognitive impairment in thalamic infarction. METHODS From March 2019 to March 2022, 80 patients with thalamic infarction were divided into a group with cognitive impairment [Montreal Cognitive Assessment (MoCA) score < 26; 35 patients] and a group with normal cognitive function (MoCA score of 26-30; 45 patients) according to the MoCA score. In addition, 50 healthy people in the same period were selected as the control group. A correlation between the non-HDL-C and Hcy levels and the MoCA score and receiver operating characteristic curve was observed, and the serum non-HDL-C and Hcy levels were analyzed for the diagnosis of cognitive impairment in patients with thalamic infarction. According to the Modified Rankin Scale (MRS) score, 80 patients with thalamic infarction were divided into a good prognosis group (MRS score ≤ 2) and a poor prognosis group (MRS score >2). RESULTS The non-HDL-C and Hcy levels were significantly higher in the group with cognitive impairment than in the group with normal cognitive function (P < 0.05). There was no significant difference in the non-HDL-C level between the control group and the group with normal cognitive function (P > 0.05). The MoCA scores of the group with cognitive impairment were significantly lower than those of the group with normal cognitive function and the control group (P < 0.05). There was a significant difference between the control group and the group with normal cognitive function (P < 0.05). The non-HDL-C and Hcy levels were correlated with the MoCA score (P < 0.05), cognitive impairment [areas under the curve (AUC) = 0.709, 95% confidence interval (95%CI): 0.599-0.816], the non-HDL-C level, and could predict cognitive impairment in patients with thalamic infarction (AUC = 0.738, 95%CI: 0.618-0.859). Hcy combined with non-HDL-C levels can predict cognitive impairment in patients with thalamic infarction (AUC = 0.769, 95%CI: 0.721-0.895).There were 50 patients in the good prognosis group and 30 patients in the poor prognosis group. Compared with the good prognosis group, in the poor prognosis group, the National Institutes of Health Stroke Scale (NIHSS) score, non-HDL-C level, Hcy level, large-area cerebral infarction, atrial fibrillation, and activated partial prothrombin time were statistically significant (P < 0.05). The non-HDL-C level, the Hcy level, the NIHSS score, extensive cerebral serum, and atrial fibrillation may all be independent risk factors for poor prognosis in patients with thalamic infarction (P < 0.05). CONCLUSION Non-HDL-C and Hcy levels are positively correlated with cognitive impairment in patients with thalamic infarction. Non-HDL-C and Hcy levels can be used in the diagnosis of cognitive impairment in patients with thalamic infarction, and the combined detection effect is better. The main factors affecting the prognosis of patients with thalamic infarction are the non-HDL-C level, the Hcy level, the NIHSS score, large-area cerebral infarction, and atrial fibrillation. Clinically, corresponding preventive measures can be formulated based on the above factors to prevent poor prognosis and reduce mortality.
Collapse
Affiliation(s)
- Shan-Yao Zhu
- Department of Internal Medicine-Neurology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei 238000, Anhui Province, China
| | - Wei Ge
- Department of Internal Medicine-Neurology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei 238000, Anhui Province, China
| | - Huan Zhang
- Department of Internal Medicine-Neurology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei 238000, Anhui Province, China
| |
Collapse
|
4
|
Ponomarenko M. Developmental Biology: Computational and Experimental Approaches. Int J Mol Sci 2023; 24:10435. [PMID: 37445614 DOI: 10.3390/ijms241310435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Developmental biology studies ontogenesis, the individual development of an organism from the time of fertilization in sexual reproduction or its expelling from the maternal organism in asexual reproduction to the end of an organism's life, with all phenotypical characters typical of this biological species and supporting the normal course of all biochemical processes and morphogenesis [...].
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Orlov YL, Anashkina AA, Kumeiko VV, Chen M, Kolchanov NA. Research Topics of the Bioinformatics of Gene Regulation. Int J Mol Sci 2023; 24:ijms24108774. [PMID: 37240120 DOI: 10.3390/ijms24108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The study of gene expression regulation raises the challenge of developing bioinformatics tools and algorithms, demanding data integration [...].
Collapse
Affiliation(s)
- Yuriy L Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Life Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Anastasia A Anashkina
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Life Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Shikhevich S, Chadaeva I, Khandaev B, Kozhemyakina R, Zolotareva K, Kazachek A, Oshchepkov D, Bogomolov A, Klimova NV, Ivanisenko VA, Demenkov P, Mustafin Z, Markel A, Savinkova L, Kolchanov NA, Kozlov V, Ponomarenko M. Differentially Expressed Genes and Molecular Susceptibility to Human Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24043996. [PMID: 36835409 PMCID: PMC9966505 DOI: 10.3390/ijms24043996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Mainstream transcriptome profiling of susceptibility versus resistance to age-related diseases (ARDs) is focused on differentially expressed genes (DEGs) specific to gender, age, and pathogeneses. This approach fits in well with predictive, preventive, personalized, participatory medicine and helps understand how, why, when, and what ARDs one can develop depending on their genetic background. Within this mainstream paradigm, we wanted to find out whether the known ARD-linked DEGs available in PubMed can reveal a molecular marker that will serve the purpose in anyone's any tissue at any time. We sequenced the periaqueductal gray (PAG) transcriptome of tame versus aggressive rats, identified rat-behavior-related DEGs, and compared them with their known homologous animal ARD-linked DEGs. This analysis yielded statistically significant correlations between behavior-related and ARD-susceptibility-related fold changes (log2 values) in the expression of these DEG homologs. We found principal components, PC1 and PC2, corresponding to the half-sum and the half-difference of these log2 values, respectively. With the DEGs linked to ARD susceptibility and ARD resistance in humans used as controls, we verified these principal components. This yielded only one statistically significant common molecular marker for ARDs: an excess of Fcγ receptor IIb suppressing immune cell hyperactivation.
Collapse
Affiliation(s)
- Svetlana Shikhevich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Rimma Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Natalya V. Klimova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arcady Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology (RIFCI) SB RAS, Novosibirsk 630099, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1311)
| |
Collapse
|
8
|
Yasmeen E, Wang J, Riaz M, Zhang L, Zuo K. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. PLANT COMMUNICATIONS 2023:100558. [PMID: 36760129 PMCID: PMC10363483 DOI: 10.1016/j.xplc.2023.100558] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the development of high-throughput biology techniques and artificial intelligence, it has become increasingly feasible to design and construct artificial biological parts, modules, circuits, and even whole systems. To overcome the limitations of native promoters in controlling gene expression, artificial promoter design aims to synthesize short, inducible, and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways. Synthetic promoters are versatile and can drive gene expression accurately with smart responses; they show potential for enhancing desirable traits in crops, thereby improving crop yield, nutritional quality, and food security. This review first illustrates the importance of synthetic promoters, then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction. Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.
Collapse
Affiliation(s)
- Erum Yasmeen
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lida Zhang
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Vishnevsky O, Chadaeva I, Sharypova E, Khandaev B, Zolotareva K, Kazachek A, Ponomarenko P, Podkolodny N, Rasskazov D, Bogomolov A, Podkolodnaya O, Savinkova L, Zemlyanskaya E, Ponomarenko M. Promoters of genes encoding β-amylase, albumin and globulin in food plants have weaker affinity for TATA-binding protein as compared to non-food plants: in silico analysis. Vavilovskii Zhurnal Genet Selektsii 2022; 26:798-805. [PMID: 36694715 PMCID: PMC9837162 DOI: 10.18699/vjgb-22-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
It is generally accepted that during the domestication of food plants, selection was focused on their productivity, the ease of their technological processing into food, and resistance to pathogens and environmental stressors. Besides, the palatability of plant foods and their health benefits could also be subjected to selection by humans in the past. Nonetheless, it is unclear whether in antiquity, aside from positive selection for beneficial properties of plants, humans simultaneously selected against such detrimental properties as allergenicity. This topic is becoming increasingly relevant as the allergization of the population grows, being a major challenge for modern medicine. That is why intensive research by breeders is already underway for creating hypoallergenic forms of food plants. Accordingly, in this paper, albumin, globulin, and β-amylase of common wheat Triticum aestivum L. (1753) are analyzed, which have been identified earlier as targets for attacks by human class E immunoglobulins. At the genomic level, we wanted to find signs of past negative selection against the allergenicity of these three proteins (albumin, globulin, and β-amylase) during the domestication of ancestral forms of modern food plants. We focused the search on the TATA-binding protein (TBP)-binding site because it is located within a narrow region (between positions -70 and -20 relative to the corresponding transcription start sites), is the most conserved, necessary for primary transcription initiation, and is the best-studied regulatory genomic signal in eukaryotes. Our previous studies presented our publicly available Web service Plant_SNP_TATA_Z-tester, which makes it possible to estimate the equilibrium dissociation constant (KD) of TBP complexes with plant proximal promoters (as output data) using 90 bp of their DNA sequences (as input data). In this work, by means of this bioinformatics tool, 363 gene promoter DNA sequences representing 43 plant species were analyzed. It was found that compared with non-food plants, food plants are characterized by significantly weaker affinity of TBP for proximal promoters of their genes homologous to the genes of common-wheat globulin, albumin, and β-amylase (food allergens) (p < 0.01, Fisher's Z-test). This evidence suggests that in the past humans carried out selective breeding to reduce the expression of food plant genes encoding these allergenic proteins.
Collapse
Affiliation(s)
- O.V. Vishnevsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russi
| | - I.V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B.M. Khandaev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K.A. Zolotareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.V. Kazachek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P.M. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N.L. Podkolodny
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaInstitute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D.A. Rasskazov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.G. Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O.A. Podkolodnaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L.K. Savinkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.V. Zemlyanskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M.P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|