1
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
2
|
Arunim, Sarita, Mishra R, Bajpai S. Natural biopolymer-based hydrogels: an advanced material for diabetic wound healing. Diabetol Int 2024; 15:719-731. [PMID: 39469550 PMCID: PMC11512956 DOI: 10.1007/s13340-024-00737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/26/2024] [Indexed: 10/30/2024]
Abstract
A diabetic foot ulcer (DFU) is an open sore or wound that typically develops on the bottom of the foot. Almost 15% of people with diabetes are suffering from delayed wound healing worldwide. The main vehicle for the development of ulcers in the diabetic population is poor circulation and peripheral neuropathy. Chronic injuries from diabetes frequently lead to traumatic lower leg amputations. Hydrogels are three-dimensional gels that can be fabricated from natural polymers and synthetic polymers. Biopolymers are flexible, elastic, or fibrous materials that come from a natural source, such as plants, animals, bacteria, or other living things. Some of the naturally occurring polymers that are frequently employed in wound dressing applications include polysaccharides and proteins. These polymers can be employed for many therapeutic applications because of their inherent biocompatibility, low immunogenicity, non-toxicity, and biodegradability. They represent a tuneable platform for enhancing skin healing. Therefore, this review paper interprets how natural biopolymers and their various hydrogel forms can be potentially used for diabetic wound healing.
Collapse
Affiliation(s)
- Arunim
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan Tonk, 304022 India
| | - Sarita
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan Tonk, 304022 India
| | - Rakesh Mishra
- Advance Center for Medical Genetics (ACMG), Haematology Tower, Sri Ram Cancer Superspeciality, Mahatma Gandhi Hospital, Sitapura Industrial Area, Rajasthan Jaipur, India
| | - Surabhi Bajpai
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan Tonk, 304022 India
| |
Collapse
|
3
|
Benkhira I, Zermane F, Cheknane B, Trache D, Brosse N, Paolone A, Chader H, Sobhi W. Preparation and characterization of amidated pectin-gelatin-oxidized tannic acid hydrogel films supplemented with in-situ reduced silver nanoparticles for wound-dressing applications. Int J Biol Macromol 2024; 277:134158. [PMID: 39059528 DOI: 10.1016/j.ijbiomac.2024.134158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Wound dressings play a crucial role in protecting injured tissues and promoting the healing process. Traditional fabrication of antibacterial wound dressings can be complex and may involve toxic components. In this study, we developed an innovative hydrogel film (AP:GE@OTA/Ag) composed of amidated pectin (AP), gelatin (GE), oxidized tannic acid (OTA) at varying concentrations, and in-situ reduced silver nanoparticles (AgNPs). FTIR and XRD analyses confirmed that crosslinking occurs via interactions between OTA quinone groups and free amino groups in AP and GE. TEM imaging demonstrated the well-dispersed AgNPs with an average particle size of 58.64 nm, while the TG measurements indicated the enhancement of the thermal stability compared to AP:GE films. The AP:GE@OTA/Ag films exhibited superior fluid uptake ability (90.96 % at 2 h), water retention capacity (91.69 % at 2 h), and water vapor transmission rate (1903.29 g/m2/day), alongside improved tensile strength (38 MPa). Additionally, these films showed excellent cytocompatibility and sustained potent antimicrobial activity against S. aureus and E. coli with low AgNPs loadings of 1.02 ± 0.13 μg/cm2. NIT-1 mouse insulinoma cells demonstrated robust proliferation when cultured with the prepared dressings. These films significantly accelerated wound repair in a skin excision model, indicating their potential clinical applications for wound healing.
Collapse
Affiliation(s)
- Ilyas Benkhira
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria.
| | - Faiza Zermane
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria
| | - Benamar Cheknane
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria
| | - Djalal Trache
- Energetic Materials Laboratory (EMLab), Teaching and Research Unit of Energetic Processes, Polytechnic Military School, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Nicolas Brosse
- LERMAB, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-Les-Nancy, 54506, France
| | - Annalisa Paolone
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Henni Chader
- Department of Pharmacy, Faculty of Medicine, University of Algiers 1, Algiers 16001, Algeria
| | - Widad Sobhi
- Research Center of Biotechnology (CRBt), Constantine 25000, Algeria
| |
Collapse
|
4
|
Akbarpour A, Rahimnejad M, Sadeghi-Aghbash M, Feizi F. Bioactive nanofibrous mats constructs: Separate efficacy of Lawsonia inermis and Scrophularia striata extracts in PVA/alginate matrices for enhanced wound healing. Int J Biol Macromol 2024; 277:134545. [PMID: 39116967 DOI: 10.1016/j.ijbiomac.2024.134545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The study explores the use of electrospinning technology to create advanced wound dressing materials by integrating natural extracts from Lawsonia inermis (LI) and Scrophularia striata (SS) into nanofibrous matrices composed of Polyvinyl Alcohol (PVA) and Alginate (ALG). These macromolecular complexes aim to leverage the unique properties of the botanical extracts for wound healing purposes. The research assesses the physical, chemical, and mechanical attributes of the nanofibrous constructs as well as their antimicrobial activities and ability to promote wound repair. Evaluation of Cellular Viability and Cytotoxicity (MTT) tests showed high biocompatibility of the nanofibrous mats, with cell viability percentages of 92 % for LI-loaded mats and 89 % for SS-loaded mats. The antibacterial rate of extract-containing mats was 70 % higher than non-extract-containing mats. In vivo assessments on rat models with burn injuries demonstrated that mats containing LI and SS extracts substantially accelerate tissue regeneration and overall healing. Nanofibrous mats containing LI extract showed a 45 % faster wound healing process than the control, while those containing SS extract showed a 40 % improvement. Overall, the study highlights the potential of PVA/ALG nanofibrous mats augmented with LI and SS extracts as effective platforms for wound management, offering enhanced properties for superior healing outcomes.
Collapse
Affiliation(s)
- Ali Akbarpour
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mona Sadeghi-Aghbash
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Farideh Feizi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
5
|
Mondal A, Barai S, Bera H, Patel T, Sahoo NG, Begum D, Ghosh B. Ferulic acid-g-tamarind gum/guar gum based in situ gel-forming powders as wound dressings. Int J Biol Macromol 2024; 277:134382. [PMID: 39111475 DOI: 10.1016/j.ijbiomac.2024.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The current research endeavour aimed to synthesize ferulic acid grafted tamarind gum/guar gum (FA-g-TG/GG) based powders as wound dressings, which could form in situ gels upon contact with wound exudates. In this context, variable amounts of FA were initially grafted with TG via the Steglich esterification reaction protocol and the resulting conjugates were subsequently amalgamated with GG and lyophilized to produce dry powders (F-1 - -F-3) with average particle size within 5.10-5.54 μm and average angle of repose ∼30°. These powders were structurally characterized with 1H NMR, FTIR, DSC, TGA, XRD and SEM analyses. Pristine TG, FA-g-TG and FA-g-TG/GG powders (F-2) revealed their distinct morphological structures and variable negative zeta potential values (-11.06 mV-25.50 mV). Among various formulation (F-1-F-3), F-2 demonstrated an acceptable powder-to-gel conversion time (within 20 min), suitable water vapour transmission rates (WVTR, 2564.94 ± 32.47 g/m2/day) and excellent water retention abilities and swelling profiles (4559.00 ± 41.57 %) in wound fluid. The powders were cytocompatible and conferred antioxidant activities. The powders also displayed fibroblast cell proliferation, migration and adhesion properties, implying their wound-healing potentials. Thus, the developed in situ gel-forming powders could be employed as promising dressings for wound management.
Collapse
Affiliation(s)
- Akash Mondal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | - Suman Barai
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | - Hriday Bera
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India.
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nanda Gopal Sahoo
- Department of Chemistry, Kumaun University, Nainital 263001, Uttarakhand, India
| | - Darakhshan Begum
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
6
|
Akinsemolu AA, Idowu AM, Onyeaka HN. Recycling Technologies for Biopolymers: Current Challenges and Future Directions. Polymers (Basel) 2024; 16:2770. [PMID: 39408479 PMCID: PMC11478719 DOI: 10.3390/polym16192770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Plastic pollution is a major driver of climate change that is associated with biodiversity loss, greenhouse gas emissions, and negative soil, plant, animal, and human health. One of the solutions that has been proposed and is currently reducing the adverse effects of plastic on the planet is the replacement of synthetic plastics with biopolymers. The biodegradable polymers have been adapted for most of the applications of synthetic plastic. However, their use and disposal present some sustainability challenges. Recycling emerges as an effective way of promoting the sustainability of biopolymer use. In this article, we review recycling as a viable solution to improve the sustainability of biopolymers, emphasizing the current types and technologies employed in biopolymer recycling and the challenges faced in their adoption. Our exploration of the future directions in the conversion of biopolymers into new polymers for reuse establishes a connection between established continuous technological innovation, integration into circular economy models, and the establishment and strengthening of collaborations among key stakeholders in relevant industries as necessary steps for the adoption, full utilization, and improvement of recycling technologies for biopolymers. By connecting these factors, this study lays a foundation for the establishment of a roadmap for improved biopolymer recycling technologies and processes that promote the sustainability of synthetic plastic alternatives.
Collapse
Affiliation(s)
- Adenike A. Akinsemolu
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- The Green Institute, Ondo 351101, Nigeria
| | - Adetola M. Idowu
- Faculty of Life Sciences, Rhein-Waal University of Applied Science, 47533 Kleve, Germany;
| | - Helen N. Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Picciotti SL, El-Ahmad H, Bucci MP, Grayton QE, Wallet SM, Schoenfisch MH. Delivery of Nitric Oxide by Chondroitin Sulfate C Increases the Rate of Wound Healing through Immune Modulation. ACS APPLIED BIO MATERIALS 2024; 7:6152-6161. [PMID: 39159191 DOI: 10.1021/acsabm.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Chronic wounds impact 2.5% of the United States population and will continue to be a major clinical challenge due to increases in population age, chronic disease diagnoses, and antibiotic-resistant infection. Nitric oxide (NO) is an endogenous signaling molecule that represents an attractive, simple therapeutic for chronic wound treatment due to its innate antibacterial and immunomodulatory function. Unfortunately, modulating inflammation for extended periods by low levels of NO is not possible with NO gas. Herein, we report the utility of a NO-releasing glycosaminoglycan biopolymer (GAG) for promoting wound healing. GAGs are naturally occurring biopolymers that are immunomodulatory and known to be involved in the native wound healing process. Thus, the combination of NO and GAG biopolymers represents an attractive wound therapeutic due to these known independent roles. The influence and contribution of chondroitin sulfate C (CSC) modified to facilitate controlled and targeted delivery of NO (CSC-HEDA/NO) was evaluated using in vitro cell proliferation and migration assays and an in vivo wound model.
Collapse
Affiliation(s)
- Samantha L Picciotti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Heba El-Ahmad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Madelyn P Bucci
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
10
|
Knoz M, Holoubek J, Lipový B, Faldyna M, Chaloupková R, Pavliňáková V, Muchová J, Kacvinská K, Brtníková J, Jarkovský J, Vojtová L. Evaluation of viscoelastic parameters and photo-based assessment of newly developed dermal substitutes modified with thermostabilized fibroblast growth factor 2. Burns 2024; 50:1586-1596. [PMID: 38641499 DOI: 10.1016/j.burns.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The purpose of dermal substitutes is to mimic the basic properties of the extracellular matrix of human skin. The application of dermal substitutes to the defect reduces the formation of hypertrophic scars and improves the scar quality. This study aims to develop an original dermal substitute enriched with stable fibroblast growth factor 2 (FGF2-STAB®) and test it in an animal model. METHODS Dermal substitutes based on collagen/chitosan scaffolds or collagen/chitosan scaffolds with nanofibrous layer were prepared and enriched with FGF2-STAB® at concentrations of 0, 0.1, 1.0, and 10.0 µg ‧ cm-2. The performance of these dermal substitutes was tested in vivo on artificially formed skin defects in female swine. The outcomes were evaluated using cutometry at 3 and 6 months. In addition, visual appearance was assessed based on photos of the scars at 1-month, 3-month and 6-month follow-ups using Yeong scale and Visual Analog Scale. RESULTS The dermal substitute was fully integrated into all defects and all wounds healed successfully. FGF2-STAB®-enriched matrices yielded better results in cutometry compared to scaffolds without FGF2. Visual evaluation at 1, 3, and 6 months follow-ups detected no significant differences among groups. The FGF2-STAB® effectiveness in improving the elasticity of scar tissues was confirmed in the swine model. This effect was independently observed in the scaffolds with nanofibres as well as in the scaffolds without nanofibres. CONCLUSION The formation of scars with the best elasticity was exhibited by addition 1.0 µg ‧ cm-2of FGF2-STAB® into the scaffolds, although it had no significant effect on visual appearance at longer follow-ups. This study creates the basis for further translational studies of the developed product and its progression into the clinical phase of the research.
Collapse
Affiliation(s)
- Martin Knoz
- Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Jihlavská 20, 625 00 Brno, Czech Republic; Clinic of plastic and esthetic surgery, St Anne's University Hospital, Pekarska 664/53, 602 00 Brno, Czech Republic
| | - Jakub Holoubek
- Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Jihlavská 20, 625 00 Brno, Czech Republic.
| | - Břetislav Lipový
- Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Jihlavská 20, 625 00 Brno, Czech Republic; CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | | | - Veronika Pavliňáková
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Johana Muchová
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Katarína Kacvinská
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jana Brtníková
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Lucy Vojtová
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| |
Collapse
|
11
|
Wang M, Liu K, Wang X, Shang Z, Liu Y, Pan N, Sun X, Xu W. Limbal stem cells carried by a four-dimensional -printed chitosan-based scaffold for corneal epithelium injury in diabetic rabbits. Front Physiol 2024; 15:1285850. [PMID: 38887317 PMCID: PMC11180886 DOI: 10.3389/fphys.2024.1285850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Methods: Herein, we obtained and characterized deltaN p63- and adenosine triphosphate-binding cassette subfamily G member 2-expressing limbal stem cells (LSCs). Chitosan and carboxymethyl chitosan (CTH) were cross-linked to be an in situ thermosensitive hydrogel (ACH), which was printed through four-dimensional (4D) printing to obtain a porous carrier with uniform pore diameter (4D-CTH). Rabbits were injected with alloxan to induce diabetes mellitus (DM). Following this, the LSC-carrying hydrogel was spread on the surface of the cornea of the diabetic rabbits to cure corneal epithelium injury. Results: Compared with the control group (LSCs only), rapid wound healing was observed in rabbits treated with LSC-carrying 4D-CTH. Furthermore, the test group also showed better corneal nerve repair ability. The results indicated the potential of LSC-carrying 4D-CTH in curing corneal epithelium injury. Conclusion: 4D-CTH holds potential as a useful tool for studying regenerative processes occurring during the treatment of various diabetic corneal epithelium pathologies with the use of stem cell-based technologies.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Kaibin Liu
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Zhen Shang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Yiming Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Nailong Pan
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Xueqing Sun
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
13
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
14
|
Srivastava GK, Martinez-Rodriguez S, Md Fadilah NI, Looi Qi Hao D, Markey G, Shukla P, Fauzi MB, Panetsos F. Progress in Wound-Healing Products Based on Natural Compounds, Stem Cells, and MicroRNA-Based Biopolymers in the European, USA, and Asian Markets: Opportunities, Barriers, and Regulatory Issues. Polymers (Basel) 2024; 16:1280. [PMID: 38732749 PMCID: PMC11085499 DOI: 10.3390/polym16091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024] Open
Abstract
Wounds are breaks in the continuity of the skin and underlying tissues, resulting from external causes such as cuts, blows, impacts, or surgical interventions. Countless individuals suffer minor to severe injuries, with unfortunate cases even leading to death. In today's scenario, several commercial products are available to facilitate the healing process of wounds, although chronic wounds still present more challenges than acute wounds. Nevertheless, the huge demand for wound-care products within the healthcare sector has given rise to a rapidly growing market, fostering continuous research and development endeavors for innovative wound-healing solutions. Today, there are many commercially available products including those based on natural biopolymers, stem cells, and microRNAs that promote healing from wounds. This article explores the recent breakthroughs in wound-healing products that harness the potential of natural biopolymers, stem cells, and microRNAs. A comprehensive exploration is undertaken, covering not only commercially available products but also those still in the research phase. Additionally, we provide a thorough examination of the opportunities, obstacles, and regulatory considerations influencing the potential commercialization of wound-healing products across the diverse markets of Europe, America, and Asia.
Collapse
Affiliation(s)
- Girish K. Srivastava
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain;
- Instituto Universitario de Oftalmobiología Aplicada, Facultad de Medicina, Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Sofia Martinez-Rodriguez
- Instituto Universitario de Oftalmobiología Aplicada, Facultad de Medicina, Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
| | - Daniel Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Gavin Markey
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK; (G.M.); (P.S.)
| | - Priyank Shukla
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK; (G.M.); (P.S.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Bioactive Surfaces SL, 28260 Madrid, Spain
- Omnia Mater SL, 28009 Madrid, Spain
| |
Collapse
|
15
|
González-Restrepo D, Zuluaga-Vélez A, Orozco LM, Sepúlveda-Arias JC. Silk fibroin-based dressings with antibacterial and anti-inflammatory properties. Eur J Pharm Sci 2024; 195:106710. [PMID: 38281552 DOI: 10.1016/j.ejps.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Silk fibroin is a fibrillar protein obtained from arthropods such as mulberry and non-mulberry silkworms. Silk fibroin has been used as a dressing in wound treatment for its physical, chemical, mechanical, and biological properties. This systematic review analyzed studies from PubMed, Web of Science, and Scopus databases to identify the molecules preferred for functionalizing silk fibroin-based dressings and to describe their mechanisms of exhibiting anti-inflammatory and antibacterial properties. The analysis of the selected articles allowed us to classify the dressings into different conformations, such as membranes, films, hydrogels, sponges, and bioadhesives. The incorporation of various molecules, including antibiotics, natural products, peptides, nanocomposites, nanoparticles, secondary metabolites, growth factors, and cytokines, has allowed the development of dressings that promote wound healing with antibacterial and immunomodulatory properties. In addition, silk fibroin-based dressings have been established to have the potential to regenerate wounds such as venous ulcers, arterial ulcers, diabetic foot, third-degree burns, and neoplastic ulcers. Evaluation of the efficacy of silk fibroin-based dressings in tissue engineering is an area of great activity that has shown significant advances in recent years.
Collapse
Affiliation(s)
- David González-Restrepo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Lina M Orozco
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
16
|
Wu SH, Rethi L, Pan WY, Nguyen HT, Chuang AEY. Emerging horizons and prospects of polysaccharide-constructed gels in the realm of wound healing. Colloids Surf B Biointerfaces 2024; 235:113759. [PMID: 38280240 DOI: 10.1016/j.colsurfb.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.
Collapse
Affiliation(s)
- Shen-Han Wu
- Taipei Medical University Hospital, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan; Ph.D Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
17
|
Ungureanu C, Răileanu S, Zgârian R, Tihan G, Burnei C. State-of-the-Art Advances and Current Applications of Gel-Based Membranes. Gels 2024; 10:39. [PMID: 38247761 PMCID: PMC10815837 DOI: 10.3390/gels10010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gel-based membranes, a fusion of polymer networks and liquid components, have emerged as versatile tools in a variety of technological domains thanks to their unique structural and functional attributes. Historically rooted in basic filtration tasks, recent advancements in synthetic strategies have increased the mechanical strength, selectivity, and longevity of these membranes. This review summarizes their evolution, emphasizing breakthroughs that have positioned them at the forefront of cutting-edge applications. They have the potential for desalination and pollutant removal in water treatment processes, delivering efficiency that often surpasses conventional counterparts. The biomedical field has embraced them for drug delivery and tissue engineering, capitalizing on their biocompatibility and tunable properties. Additionally, their pivotal role in energy storage as gel electrolytes in batteries and fuel cells underscores their adaptability. However, despite monumental progress in gel-based membrane research, challenges persist, particularly in scalability and long-term stability. This synthesis provides an overview of the state-of-the-art applications of gel-based membranes and discusses potential strategies to overcome current limitations, laying the foundation for future innovations in this dynamic field.
Collapse
Affiliation(s)
- Camelia Ungureanu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Silviu Răileanu
- Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Science, The National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenţei 313 Street, 060042 Bucharest, Romania;
| | - Roxana Zgârian
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Grațiela Tihan
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Cristian Burnei
- Clinical Department of Orthopedics and Traumatology II, Clinical Emergency Hospital, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
18
|
Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, Caluian I, Herciu L, Giscă TC, Baican MC, Crivoi F, Profire L. Modern Approaches in Wounds Management. Polymers (Basel) 2023; 15:3648. [PMID: 37688274 PMCID: PMC10489962 DOI: 10.3390/polym15173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iasi, Romania
| | - Florentina-Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Iulian Caluian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Lorena Herciu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Tudor-Catalin Giscă
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street 700115 Iasi, Romania;
| | - Mihaela-Cristina Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| |
Collapse
|
19
|
Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J Funct Biomater 2023; 14:455. [PMID: 37754869 PMCID: PMC10531657 DOI: 10.3390/jfb14090455] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.
Collapse
Affiliation(s)
- Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
20
|
Dodi G, Sabau RE, Crețu BEB, Gardikiotis I. Exploring the Antioxidant Potential of Gellan and Guar Gums in Wound Healing. Pharmaceutics 2023; 15:2152. [PMID: 37631366 PMCID: PMC10458899 DOI: 10.3390/pharmaceutics15082152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
It is acknowledged that the presence of antioxidants boosts the wound-healing process. Many biopolymers have been explored over the years for their antioxidant potential in wound healing, but limited research has been performed on gum structures and their derivatives. This review aims to evaluate whether the antioxidant properties of gellan and guar gums and wound healing co-exist. PubMed was the primary platform used to explore published reports on the antioxidant wound-healing interconnection, wound dressings based on gellan and guar gum, as well as the latest review papers on guar gum. The literature search disclosed that some wound-healing supports based on gellan gum hold considerable antioxidant properties, as evident from the results obtained using different antioxidant assays. It has emerged that the antioxidant properties of guar gum are overlooked in the wound-healing field, in most cases, even if this feature improves the healing outcome. This review paper is the first that examines guar gum vehicles throughout the wound-healing process. Further research is needed to design and evaluate customized wound dressings that can scavenge excess reactive oxygen species, especially in clinical practice.
Collapse
Affiliation(s)
- Gianina Dodi
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania;
| | - Rosina E. Sabau
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania;
| | - Bianca E.-B. Crețu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania;
| |
Collapse
|
21
|
S H, Unni VV, Gayathri, B N, Chandran S, Sambhudevan S. Bio-based polymers containing traditional medicinal fillers for wound healing applications - An evaluation of neoteric development and future perspectives. Biotechnol J 2023; 18:e2300006. [PMID: 37170732 DOI: 10.1002/biot.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
In recent years, health-care providers have seen more patients with difficult-to-treat wounds and burns. The biopolymer-based wound dressing protects the wounded area while assisting in the recovery of dermal and epithelial tissues throughout the healing process. The overall number of patients with chronic lesions has been expanding due to developing society, over weight, and cardiovascular illness. For the treatment of chronic wounds, there is an increasing demand for the development of ideal wound dressing materials with excellent properties such as antibacterial activity, biocompatibility, free radical scavenging capacity, non-adherent property, hydrophilicity, and so on. Nevertheless, owing to the above mention properties, natural polymers are being used for several key functions of biomedicine like narcotic distribution systems, tissue manufacturing, bandages, and so on. Accordingly, the significance of these bio-based polymers interfered with healing functions that lead to informing and inspiring youth and scientist researchers worldwide to grab with these far-reaching areas of medicine and biology. The review highlights the physiochemical properties of natural polymers, the biological evaluation of various materials as wound dressings, their synthesis and mechanical properties, clinical status, challenges, and future perspectives.
Collapse
Affiliation(s)
- Hema S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Vaani V Unni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Gayathri
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Niranjan B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Smitha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| |
Collapse
|
22
|
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Castañeda-Rodríguez S, González-Torres M, Ribas-Aparicio RM, Del Prado‑Audelo ML, Leyva‑Gómez G, Gürer ES, Sharifi‑Rad J. Recent advances in modified poly (lactic acid) as tissue engineering materials. J Biol Eng 2023; 17:21. [PMID: 36941601 PMCID: PMC10029204 DOI: 10.1186/s13036-023-00338-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
As an emerging science, tissue engineering and regenerative medicine focus on developing materials to replace, restore or improve organs or tissues and enhancing the cellular capacity to proliferate, migrate and differentiate into different cell types and specific tissues. Renewable resources have been used to develop new materials, resulting in attempts to produce various environmentally friendly biomaterials. Poly (lactic acid) (PLA) is a biopolymer known to be biodegradable and it is produced from the fermentation of carbohydrates. PLA can be combined with other polymers to produce new biomaterials with suitable physicochemical properties for tissue engineering applications. Here, the advances in modified PLA as tissue engineering materials are discussed in light of its drawbacks, such as biological inertness, low cell adhesion, and low degradation rate, and the efforts conducted to address these challenges toward the design of new enhanced alternative biomaterials.
Collapse
Affiliation(s)
- Samanta Castañeda-Rodríguez
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación, Ciudad de Mexico, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | - Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación, Ciudad de Mexico, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | | | - Gerardo Leyva‑Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | | |
Collapse
|
24
|
Biopolymers in diabetic wound care management: a potential substitute to traditional dressings. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, Fernandes MH, Marto J, Santos C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm 2023; 632:122541. [PMID: 36566824 DOI: 10.1016/j.ijpharm.2022.122541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.
Collapse
Affiliation(s)
- Ana Brites
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal
| | - Marta Ferreira
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal
| | - Sara Bom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Ricardo Claudio
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro S Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| | - Catarina Santos
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal; ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
26
|
Characterization of OSA starch-based films with nut-byproducts extracts for potential application as natural wound dressing. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Biopolymer-Based Wound Dressings with Biochemical Cues for Cell-Instructive Wound Repair. Polymers (Basel) 2022; 14:polym14245371. [PMID: 36559739 PMCID: PMC9783382 DOI: 10.3390/polym14245371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is an active research sphere that focuses on the repair, regeneration, and replacement of damaged tissues and organs. A plethora of innovative wound dressings and skin substitutes have been developed to treat cutaneous wounds and are aimed at reducing the length or need for a hospital stay. The inception of biomaterials with the ability to interact with cells and direct them toward desired lineages has brought about innovative designs in wound healing and tissue engineering. This cellular engagement is achieved by cell cues that can be biochemical or biophysical in nature. In effect, these cues seep into innate repair pathways, cause downstream cell behaviours and, ultimately, lead to advantageous healing. This review will focus on biomolecules with encoded biomimetic, instructive prompts that elicit desired cellular domino effects to achieve advanced wound repair. The wound healing dressings covered in this review are based on functionalized biopolymeric materials. While both biophysical and biochemical cues are vital for advanced wound healing applications, focus will be placed on biochemical cues and in vivo or clinical trial applications. The biochemical cues aforementioned will include peptide therapy, collagen matrices, cell-based therapy, decellularized matrices, platelet-rich plasma, and biometals.
Collapse
|