1
|
Chen X, Huang M, Chen Y, Xu H, Wu M. Mineralocorticoid receptor antagonists and heart failure with preserved ejection fraction: current understanding and future prospects. Heart Fail Rev 2024:10.1007/s10741-024-10455-1. [PMID: 39414721 DOI: 10.1007/s10741-024-10455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
The mineralocorticoid receptor (MR), part of the steroid hormone receptor subfamily within nuclear hormone receptors, is found in the kidney and various non-epithelial tissues, including the heart and blood vessels. When improperly activated, it can contribute to heart failure processes such as cardiac hypertrophy, fibrosis, stiffening of arteries, inflammation, and oxidative stress. MR antagonists (MRAs) have shown clear clinical benefits in patients with heart failure with reduced ejection fraction (HFrEF). However, in cases of heart failure with preserved ejection fraction (HFpEF), there is considerable diversity due to its complex underlying mechanisms, resulting in conflicting findings regarding the effectiveness of MRAs in relevant studies. The concept of phenomapping presents an encouraging avenue for investigating different intervention targets and novel therapies for HFpEF. Post hoc analysis of the TOPCAT trial identified certain HFpEF phenotypes that responded favorably to spironolactone. Growing clinical and preclinical evidence suggests that non-steroidal MRAs, which exhibit greater receptor selectivity, stronger anti-fibrotic and anti-inflammatory properties, and fewer hormone-related side effects, may emerge as another promising treatment option for HFpEF alongside sodium-glucose co-transporter 2 (SGLT2) inhibitors. This review aims to outline the structural and functional characteristics of MR, discuss the physiological effects of its activation and inhibition, and delve into the potential for personalized MRA therapy based on the concept of HFpEF phenotype.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China
| | - Meinv Huang
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China
| | - Yi Chen
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China
| | - Haishan Xu
- Department of Nephrology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China.
| | - Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China.
| |
Collapse
|
2
|
Wang J, Xue H, He J, Deng L, Tian J, Jiang Y, Feng J. Therapeutic potential of finerenone for diabetic cardiomyopathy: focus on the mechanisms. Diabetol Metab Syndr 2024; 16:232. [PMID: 39289758 PMCID: PMC11409712 DOI: 10.1186/s13098-024-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a kind of myocardial disease that occurs in diabetes patients and cannot be explained by hypertensive heart disease, coronary atherosclerotic heart disease and other heart diseases. Its pathogenesis may be closely related to programmed cell death, oxidative stress, intestinal microbes and micro-RNAs. The excessive activation of mineralocorticoid receptors (MR) in DCM can cause damage to the heart and kidneys. The third-generation non-steroidal mineralocorticoid receptor antagonist (MRA), finerenone, can effectively block MR, thus playing a role in protecting the heart and kidneys. This review mainly introduces the classification of MRA, and the mechanism of action, applications and limitations of finerenone in DCM, in order to provide reference for the study of treatment plans for DCM patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Haojie Xue
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Jinyu He
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Julong Tian
- Department of Cardiology, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Yang Jiang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Lima Posada I, Soulié M, Stephan Y, Palacios Ramirez R, Bonnard B, Nicol L, Pitt B, Kolkhof P, Mulder P, Jaisser F. Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Improves Diastolic Dysfunction in Preclinical Nondiabetic Chronic Kidney Disease. J Am Heart Assoc 2024; 13:e032971. [PMID: 38842271 PMCID: PMC11255738 DOI: 10.1161/jaha.123.032971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The mineralocorticoid receptor plays a significant role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Classic steroidal mineralocorticoid receptor antagonists are a therapeutic option, but their use in the clinic is limited due to the associated risk of hyperkalemia in patients with CKD. Finerenone is a nonsteroidal mineralocorticoid receptor antagonist that has been recently investigated in 2 large phase III clinical trials (FIDELIO-DKD [Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease] and FIGARO-DKD [Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease]), showing reductions in kidney and cardiovascular outcomes. METHODS AND RESULTS We tested whether finerenone improves renal and cardiac function in a preclinical nondiabetic CKD model. Twelve weeks after 5/6 nephrectomy, the rats showed classic signs of CKD characterized by a reduced glomerular filtration rate and increased kidney weight, associated with left ventricular (LV) diastolic dysfunction and decreased LV perfusion. These changes were associated with increased cardiac fibrosis and reduced endothelial nitric oxide synthase activating phosphorylation (ser 1177). Treatment with finerenone prevented LV diastolic dysfunction and increased LV tissue perfusion associated with a reduction in cardiac fibrosis and increased endothelial nitric oxide synthase phosphorylation. Curative treatment with finerenone improves nondiabetic CKD-related LV diastolic function associated with a reduction in cardiac fibrosis and increased cardiac phosphorylated endothelial nitric oxide synthase independently from changes in kidney function. Short-term finerenone treatment decreased LV end-diastolic pressure volume relationship and increased phosphorylated endothelial nitric oxide synthase and nitric oxide synthase activity. CONCLUSIONS We showed that the nonsteroidal mineralocorticoid receptor antagonist finerenone reduces renal hypertrophy and albuminuria, attenuates cardiac diastolic dysfunction and cardiac fibrosis, and improves cardiac perfusion in a preclinical nondiabetic CKD model.
Collapse
MESH Headings
- Animals
- Mineralocorticoid Receptor Antagonists/pharmacology
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Naphthyridines/pharmacology
- Naphthyridines/therapeutic use
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Male
- Disease Models, Animal
- Fibrosis
- Nitric Oxide Synthase Type III/metabolism
- Glomerular Filtration Rate/drug effects
- Ventricular Function, Left/drug effects
- Diastole/drug effects
- Kidney/drug effects
- Kidney/physiopathology
- Kidney/metabolism
- Phosphorylation
- Myocardium/metabolism
- Myocardium/pathology
- Rats, Sprague-Dawley
- Rats
- Nephrectomy
Collapse
Affiliation(s)
- Ixchel Lima Posada
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Matthieu Soulié
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Yohan Stephan
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Roberto Palacios Ramirez
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Lionel Nicol
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Bertram Pitt
- Department of MedicineUniversity of Michigan MedicineAnn ArborMI
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Research and Early Development, Pharmaceuticals, Bayer AGWuppertalGermany
| | - Paul Mulder
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
- Université de Lorraine, INSERM Centre d’Investigations Cliniques‐Plurithématique 1433, UMR 1116, CHRU de Nancy, French‐Clinical Research Infrastructure Network (F‐CRIN) INI‐CRCTNancyFrance
| |
Collapse
|
4
|
Psyllaki A, Tziomalos K. New perspectives in the management of diabetic nephropathy. World J Diabetes 2024; 15:1086-1090. [PMID: 38983809 PMCID: PMC11229954 DOI: 10.4239/wjd.v15.i6.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and is also associated with increased risk for cardiovascular events. Until recently, strict glycemic control and blockade of the renin-angiotensin system (RAS) constituted the mainstay of treatment of DN. However, randomized controlled trials showed that sodium-glucose cotransporter 2 inhibitors further reduce the progression of DN. Therefore, these agents are recommended in all patients with DN regardless of DN stage and HbA1c levels. Moreover, additional blockade of the RAS with finerenone, a selective non-steroidal mineralocorticoid receptor antagonist, was also shown to prevent both the decline of renal function and cardiovascular events in this population. Finally, promising preliminary findings suggest that glucagon-like peptide 1 receptor agonists might also exert reno- and cardioprotective effects in patients with DN. Hopefully, this knowledge will improve the outcomes of this high-risk group of patients.
Collapse
Affiliation(s)
- Anna Psyllaki
- The First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece
| | - Konstantinos Tziomalos
- The First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece
| |
Collapse
|
5
|
Schaefer F, Montini G, Kang HG, Walle JV, Zaritsky J, Schreuder MF, Litwin M, Scalise A, Scott H, Potts J, Iveli P, Breitenstein S, Warady BA. Investigating the use of finerenone in children with chronic kidney disease and proteinuria: design of the FIONA and open-label extension studies. Trials 2024; 25:203. [PMID: 38509517 PMCID: PMC10956186 DOI: 10.1186/s13063-024-08021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION Proteinuria is a modifiable risk factor for chronic kidney disease (CKD) progression in children. Finerenone, a selective, non-steroidal, mineralocorticoid receptor antagonist (MRA) has been approved to treat adults with CKD associated with type 2 diabetes mellitus (T2DM) following results from the phase III clinical trials FIDELIO-DKD (NCT02540993) and FIGARO-DKD (NCT02545049). In a pre-specified pooled analysis of both studies (N = 13,026), finerenone was shown to have an acceptable safety profile and was efficacious in decreasing the risk of adverse kidney and cardiovascular outcomes and of proteinuria. OBJECTIVE FIONA and the associated open-label extension (OLE) study aim to demonstrate that combining finerenone with an angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) is safe, well-tolerated, and effective in sustainably reducing urinary protein excretion in children with CKD and proteinuria. DESIGN FIONA (NCT05196035; Eudra-CT: 2021-002071-19) is a randomized (2:1), double-blind, placebo-controlled, multicenter, phase III study of 6 months' duration in approximately 219 pediatric patients. Patients must have a clinical diagnosis of CKD (an eGFR ≥ 30 mL/min/1.73 m2 if ≥ 1 to < 18 years or a serum creatinine level ≤ 0.40 mg/dL for infants 6 months to < 1 year) with significant proteinuria despite ACEi or ARB usage. The primary objective is to demonstrate that finerenone, added to an ACEi or ARB, is superior to placebo in reducing urinary protein excretion. FIONA OLE (NCT05457283; Eudra-CT: 2021-002905-89) is a single-arm, open-label study, enrolling participants who have completed FIONA. The primary objective of FIONA OLE is to provide long-term safety data. FIONA has two primary endpoints: urinary protein-to-creatinine ratio (UPCR) reduction of ≥ 30% from baseline to day 180 and percent change in UPCR from baseline to day 180. A sample size of 198 participants (aged 2 to < 18 years) in FIONA will provide at least 80% power to reject the null hypothesis of either of the two primary endpoints. CONCLUSION FIONA is evaluating the use of finerenone in children with CKD and proteinuria. Should safety, tolerability, and efficacy be demonstrated, finerenone could become a useful additional therapeutic agent in managing proteinuria and improving kidney outcomes in children with CKD. TRIAL REGISTRATION ClinicalTrials.gov NCT05196035. Registered on 19 January 2022.
Collapse
Affiliation(s)
- Franz Schaefer
- Pediatric Nephrology Division, Heidelberg University Hospital, Heidelberg, Germany.
| | - Giovanni Montini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Johan Vande Walle
- Department of Pediatric Nephrology, Ghent University Hospital, Erknet Center, C4C, Ghent, Belgium
| | - Joshua Zaritsky
- Department of Nephrology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Mieczyslaw Litwin
- Department of Nephrology and Arterial Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Helen Scott
- Bayer U.S Pharmaceuticals, Whippany, NJ, USA
| | - James Potts
- Bayer U.S Pharmaceuticals, Whippany, NJ, USA
| | | | | | - Bradley A Warady
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Children's Mercy Kansas City, Kansas City, MO, USA
| |
Collapse
|
6
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
7
|
Perakakis N, Bornstein SR, Birkenfeld AL, Linkermann A, Demir M, Anker SD, Filippatos G, Pitt B, Rossing P, Ruilope LM, Kolkhof P, Lawatscheck R, Scott C, Bakris GL. Efficacy of finerenone in patients with type 2 diabetes, chronic kidney disease and altered markers of liver steatosis and fibrosis: A FIDELITY subgroup analysis. Diabetes Obes Metab 2024; 26:191-200. [PMID: 37814928 DOI: 10.1111/dom.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
AIM Investigating the effect of finerenone on liver function, cardiovascular and kidney composite outcomes in patients with chronic kidney disease and type 2 diabetes, stratified by their risk of liver steatosis, inflammation and fibrosis. MATERIALS AND METHODS Post hoc analysis stratified patients (N = 13 026) by liver fibrosis and enzymes: high risk of steatosis (hepatic steatosis index >36); elevated transaminases [alanine transaminase (ALT) >33 (males) and >25 IU/L (females)]; and fibrosis-4 (FIB-4) index scores >3.25, >2.67 and >1.30. Liver enzymes were assessed by changes in ALT, aspartate aminotransferase and gamma-glutamyl transferase. Composite kidney outcome was defined as onset of kidney failure, sustained estimated glomerular filtration rate decline ≥57% from baseline over ≥4 weeks or kidney death. Composite cardiovascular outcome was defined as cardiovascular death, non-fatal myocardial infarction, non-fatal stroke or hospitalization for heart failure. RESULTS ALT, aspartate aminotransferase and gamma-glutamyl transferase levels were consistent between treatment groups and remained stable throughout. Finerenone consistently reduced the risk of composite kidney outcome, irrespective of altered liver tests. Higher FIB-4 score was associated with higher incidence rates of composite cardiovascular outcome. Finerenone reduced the risk of composite cardiovascular outcome versus placebo in FIB-4 subgroups by 52% (>3.25), 39% (>2.67) and 24% (>1.30) (p values for interaction = .01, .13 and .03, respectively). CONCLUSIONS Finerenone has neutral effects on liver parameters in patients with chronic kidney disease and type 2 diabetes. Finerenone showed robust and consistent kidney benefits in patients with altered liver tests, and profound cardiovascular benefits even in patients with higher FIB-4 scores who were at high risk of developing cardiovascular complications.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- University Study Center for Metabolic Diseases, Department of Internal Medicine III, Carl Gustav Carus University Clinic, TU Dresden, Dresden, Germany
- University Hospital and Faculty of Medicine, TU Dresden, Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Stefan R Bornstein
- University Study Center for Metabolic Diseases, Department of Internal Medicine III, Carl Gustav Carus University Clinic, TU Dresden, Dresden, Germany
- University Hospital and Faculty of Medicine, TU Dresden, Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Andreas L Birkenfeld
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Department of Diabetology, Endocrinology and Nephrology, University Clinic, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
| | - Andreas Linkermann
- University Study Center for Metabolic Diseases, Department of Internal Medicine III, Carl Gustav Carus University Clinic, TU Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Münevver Demir
- Hepatology Outpatient Clinic, Charité Universitätsmedizin, Berlin, Germany
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12, Madrid, Spain
- CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
| | - Peter Kolkhof
- Research and Development, Preclinical Research Cardiovascular, Wuppertal, Germany
| | | | | | - George L Bakris
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Bobkova IN. [The role of mineralocorticoid receptors hyperactivation in the development of cardiorenal complications in patients with diabetes mellitus, perspective of the selective nonsteroidal mineralocorticoid receptors antagonist's treatment: A review]. TERAPEVT ARKH 2023; 95:796-801. [PMID: 38158924 DOI: 10.26442/00403660.2023.09.202367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) activation plays a key role in the chronic kidney disease (CKD) progression and in the cardiovascular complications (CVC) development in patients with diabetes mellitus (DM). RAAS blockers alone are not sufficient to prevent CVC and CVC progression. RAAS upregulation in CKD associated with DM triggers the mineralocorticoid receptors (MCR) hyperactivation which results in fibrosis and inflammation in the heart and kidneys. This review presents the current data about the variety of MCR hyperactivation manifestations, as well as about of multiplicity of MCR hyperactivation ways in DM. The efficacy and safety of finerenone, a new MCR nonsteroidal selective antagonist, are discussed.
Collapse
Affiliation(s)
- I N Bobkova
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
9
|
Junho CVC, Frisch J, Soppert J, Wollenhaupt J, Noels H. Cardiomyopathy in chronic kidney disease: clinical features, biomarkers and the contribution of murine models in understanding pathophysiology. Clin Kidney J 2023; 16:1786-1803. [PMID: 37915935 PMCID: PMC10616472 DOI: 10.1093/ckj/sfad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 11/03/2023] Open
Abstract
The cardiorenal syndrome (CRS) is described as a multi-organ disease encompassing bidirectionally heart and kidney. In CRS type 4, chronic kidney disease (CKD) leads to cardiac injury. Different pathological mechanisms have been identified to contribute to the establishment of CKD-induced cardiomyopathy, including a neurohormonal dysregulation, disturbances in the mineral metabolism and an accumulation of uremic toxins, playing an important role in the development of inflammation and oxidative stress. Combined, this leads to cardiac dysfunction and cardiac pathophysiological and morphological changes, like left ventricular hypertrophy, myocardial fibrosis and cardiac electrical changes. Given that around 80% of dialysis patients suffer from uremic cardiomyopathy, the study of cardiac outcomes in CKD is clinically highly relevant. The present review summarizes clinical features and biomarkers of CKD-induced cardiomyopathy and discusses underlying pathophysiological mechanisms recently uncovered in the literature. It discloses how animal models have contributed to the understanding of pathological kidney-heart crosstalk, but also provides insights into the variability in observed effects of CKD on the heart in different CKD mouse models, covering both "single hit" as well as "multifactorial hit" models. Overall, this review aims to support research progress in the field of CKD-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Center for Human and Molecular Biology, Homburg/Saar, Germany
| | - Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
10
|
Blazek O, Bakris GL. Slowing the Progression of Diabetic Kidney Disease. Cells 2023; 12:1975. [PMID: 37566054 PMCID: PMC10417620 DOI: 10.3390/cells12151975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetes is the most frequent cause of kidney disease that progresses to end-stage renal disease worldwide, and diabetic kidney disease is significantly related to unfavorable cardiovascular outcomes. Since the 1990s, specific therapies have emerged and been approved to slow the progression of diabetic kidney disease, namely, renin-angiotensin-aldosterone system blockers (including angiotensin-converting enzyme inhibitors (ACEi) angiotensin receptor blockers (ARBs), the non-steroidal mineralocorticoid receptor antagonist (NS-MRA), finerenone, and sodium-glucose cotransporter-2 (SGLT2) inhibitors). Mechanistically, these different classes of agents bring different anti-inflammatory, anti-fibrotic, and complementary hemodynamic effects to patients with diabetic kidney disease such that they have additive benefits on slowing disease progression. Within the coming year, there will be data on renal outcomes using the glucagon-like peptide-1 receptor agonist, semaglutide. All the aforementioned medications have also been shown to improve cardiovascular outcomes. Thus, all three classes (maximally dosed ACEi or ARB, low-dose SGLT-2 inhibitors, and the NS-MRA, finerenone) form the "pillars of therapy" such that, when used together, they maximally slow diabetic kidney disease progression. Ongoing studies aim to expand these pillars with additional medications to potentially normalize the decline in kidney function and reduce associated cardiovascular mortality.
Collapse
Affiliation(s)
| | - George L. Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, IL 60637, USA;
| |
Collapse
|
11
|
Di Lullo L, Lavalle C, Scatena A, Mariani MV, Ronco C, Bellasi A. Finerenone: Questions and Answers-The Four Fundamental Arguments on the New-Born Promising Non-Steroidal Mineralocorticoid Receptor Antagonist. J Clin Med 2023; 12:3992. [PMID: 37373685 PMCID: PMC10299719 DOI: 10.3390/jcm12123992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most common complications of diabetes mellitus and an independent risk factor for cardiovascular disease. Despite guideline-directed therapy of CKD in patients with type 2 diabetes, the risk of renal failure and cardiovascular events still remains high, and diabetes remains the leading cause of end-stage kidney disease in affected patients. To date, current medications for CKD and type 2 diabetes mellitus have not reset residual risk in patients due to a high grade of inflammation and fibrosis contributing to kidney and heart disease. This question-and-answer-based review will discuss the pharmacological and clinical differences between finerenone and other mineralocorticoid receptor antagonists and then move on to the main evidence in the cardiovascular and renal fields, closing, finally, on the potential role of therapeutic combination with sodium-glucose cotransporter 2 inhibitors (SGLT2is).
Collapse
Affiliation(s)
- Luca Di Lullo
- Department of Nephrology and Dialysis, L. Parodi—Delfino Hospital, 00034 Colleferro, Italy
| | - Carlo Lavalle
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (C.L.); (M.V.M.)
| | | | - Marco Valerio Mariani
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (C.L.); (M.V.M.)
| | - Claudio Ronco
- International Renal Research Institute (IRRIV), S. Bortolo Hospital, 36100 Vicenza, Italy
| | - Antonio Bellasi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland;
| |
Collapse
|
12
|
Kearney J, Gnudi L. The Pillars for Renal Disease Treatment in Patients with Type 2 Diabetes. Pharmaceutics 2023; 15:pharmaceutics15051343. [PMID: 37242585 DOI: 10.3390/pharmaceutics15051343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The diabetes epidemic and the increasing number of patients with diabetic chronic vascular complications poses a significant challenge to health care providers. Diabetic kidney disease is a serious diabetes-mediated chronic vascular complication and represents a significant burden for both patients and society in general. Diabetic kidney disease not only represents the major cause of end stage renal disease but is also paralleled by an increase in cardiovascular morbidity and mortality. Any interventions to delay the development and progression of diabetic kidney disease are important to reduce the associated cardiovascular burden. In this review we will discuss five therapeutic tools for the prevention and treatment of diabetic kidney disease: drugs inhibiting the renin-angiotensin-aldosterone system, statins, the more recently recognized sodium-glucose co-transporter-2 inhibitors, glucagon-like peptide 1 agonists, and a novel non-steroidal selective mineralocorticoid receptor antagonist.
Collapse
Affiliation(s)
- Jessica Kearney
- Department of Diabetes and Endocrinology, Guy's and St Thomas NHS Foundation Trust, London SE1 9RT, UK
| | - Luigi Gnudi
- Department of Diabetes and Endocrinology, Guy's and St Thomas NHS Foundation Trust, London SE1 9RT, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
| |
Collapse
|
13
|
Salukhov VV, Shamkhalova MS, Duganova AV. [Finerenone cardiorenal effects and its placement in treatment of chronic kidney disease in patients with type 2 diabetes mellitus: A review]. TERAPEVT ARKH 2023; 95:261-273. [PMID: 37167149 DOI: 10.26442/00403660.2023.03.202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Chronic kidney disease (CKD) is one of the most common complications of diabetes mellitus and an independent risk factor for cardiovascular disease. Despite guideline-directed therapy of CKD in patients with type 2 diabetes, the risk of renal failure and cardiovascular events still remains high. To date, current medications for CKD haven't reduced enough the residual risk associated with inflammation and fibrosis in patients with type 2 diabetes. Here, in this review we present the results of FIDELIO-DKD, FIGARO-DKD trials and their pooled analysis FIDELITY, aimed to evaluate the effectiveness and safety of selective non-steroidal mineralocorticoid receptor antagonist finerenone in patients with type 2 diabetes with wide range stages of CKD. Modern pathophysiological aspects of mineralocorticoid receptor hyperactivation and features of their blockade by steroidal and nonsteroidal mineralocorticoid receptor antagonists are considered, differences in pharmacological effects between them are also discussed, finerenone benefits and its adverse events, demonstrated in randomized clinical trials are considered here. The probable mechanisms of early and delayed action of finerenone, which were realized in beneficial cardiovascular and renal outcomes in patients with type 2 diabetes with CKD, are presented here. Practical points for finerenone initiation and titration are indicated, aimed to minimize the hyperkalemia risk. Current guidelines for CKD treatment in patients with type 2 diabetes are analyzed, the finerenone placement in combined nephroprotective therapy is determined.
Collapse
|
14
|
Abstract
With a global burden of 844 million, chronic kidney disease (CKD) is now considered a public health priority. Cardiovascular risk is pervasive in this population, and low-grade systemic inflammation is an established driver of adverse cardiovascular outcomes in these patients. Accelerated cellular senescence, gut microbiota-dependent immune activation, posttranslational lipoprotein modifications, neuroimmune interactions, osmotic and nonosmotic sodium accumulation, acute kidney injury, and precipitation of crystals in the kidney and the vascular system all concur in determining the unique severity of inflammation in CKD. Cohort studies documented a strong link between various biomarkers of inflammation and the risk of progression to kidney failure and cardiovascular events in patients with CKD. Interventions targeting diverse steps of the innate immune response may reduce the risk of cardiovascular and kidney disease. Among these, inhibition of IL-1β (interleukin-1 beta) signaling by canakinumab reduced the risk for cardiovascular events in patients with coronary heart disease, and this protection was equally strong in patients with and without CKD. Several old (colchicine) and new drugs targeting the innate immune system, like the IL-6 (interleukin 6) antagonist ziltivekimab, are being tested in large randomized clinical trials to thoroughly test the hypothesis that mitigating inflammation may translate into better cardiovascular and kidney outcomes in patients with CKD.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute New York and Institute of Molecular Biology and genetics (BIOGEM), Ariano Irpino, Italy and Associazione Ipertensione, Nefrologia, Trapianto (IPNET), Reggio Calabria Italy (C.Z.)
| | - Francesca Mallamaci
- Division of Nephrology and Transplantation, Grande Ospedale Metropolitano, Reggio Calabria, Italy and National Research Council (CNR), Clinical Epidemiology of Hypertension and Renal Diseases Unit of the Institute of Clinical Physiology, Reggio Calabria, Italy (F.M.)
| |
Collapse
|