1
|
Zafar A, Takeda C, Manzoor A, Tanaka D, Kobayashi M, Wadayama Y, Nakane D, Majeed A, Iqbal MA, Akitsu T. Towards Industrially Important Applications of Enhanced Organic Reactions by Microfluidic Systems. Molecules 2024; 29:398. [PMID: 38257311 PMCID: PMC10820862 DOI: 10.3390/molecules29020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
This review presents a comprehensive evaluation for the manufacture of organic molecules via efficient microfluidic synthesis. Microfluidic systems provide considerably higher control over the growth, nucleation, and reaction conditions compared with traditional large-scale synthetic methods. Microfluidic synthesis has become a crucial technique for the quick, affordable, and efficient manufacture of organic and organometallic compounds with complicated characteristics and functions. Therefore, a unique, straightforward flow synthetic methodology can be developed to conduct organic syntheses and improve their efficiency.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - China Takeda
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Asif Manzoor
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 169-8050, Japan
| | - Masashi Kobayashi
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 169-8050, Japan
| | - Yoshitora Wadayama
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Daisuke Nakane
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Adnan Majeed
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| |
Collapse
|
2
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
3
|
Nasser A, Migahed MA, El Basiony NM, Abd-El-Bary HM, Mohamed TA. Electrochemical, surface analysis, computational and anticorrosive studies of novel di-imine Schiff base on X65 steel surface. Sci Rep 2023; 13:10457. [PMID: 37380763 DOI: 10.1038/s41598-023-37321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The inhibitory effect of di-imine-SB namely ((N1Z, N4E)-N1, N4-bis (4 (dimethylamino) benzylidene) butane 1,4-diamine) on X65-steel in 1 M HCl has been investigated experimentally and theoretically. The electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and weight loss outcomes display the anticorrosion properties of "di-imine- SB". The inhibitory efficiency exceeds 90% at the optimal concentration of 1 × 10-3 M "di-imine- SB". The metal surface was examined further using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The effectiveness of the di-imine-SB is returned into its adsorption on X65-steel surface and found in agreement with Langmuir adsorption isotherm. According to the standard Gibbs free energy of adsorption [Formula: see text], di-imine-SB adsorption tends to be chemical rather than physical, it increases the activation energy ([Formula: see text]) of metal dissolution reaction and makes it hard to occur. The PDP data suggested anodic and cathodic type of the di-imine-SB inhibitor. Meanwhile, increasing the resistance of X65-steel to 301 Ω cm2 after adding 1 mM of di-imine-SB confirms its protective effect. Whereas, the positive value of the fraction of electron transference (ΔN, 0.746), confirms the affinity of di-imine-SB to share electrons to the partially filed 3d-orbital of Fe forming strong protective film over X65-steel surface. Aided by Monte Carlo (MC) simulation, the calculated adsorption energy (Eads) suggests excessive adsorption affinity of di-imine-SB on metal surface over the corrosive chlorides and hydronium ions. A good correlation between the theoretical hypothesis and the experimental inhibition efficiency has been achieved. The comparative study showed the superior of the di-imine-SB as potential corrosion inhibitor compared with those reported before. Finally, global reactivity descriptors; electron affinity (A), ionization potential (I), electronegativity (χ), dipole moment (µ), global hardness ([Formula: see text]), electrophilicity index and, Fukui indices were also calculated and found well correlated to the reactivity of di-imine-SB.
Collapse
Affiliation(s)
- Ahmed Nasser
- The Higher Institute of Engineering, New Elmarg, El-Qalyubia, Egypt
- Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - M A Migahed
- Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - N M El Basiony
- Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - H M Abd-El-Bary
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Tarek A Mohamed
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
4
|
Al-Amiery A, Isahak WNRW, Al-Azzawi WK. Multi-method evaluation of a 2-(1,3,4-thiadiazole-2-yl)pyrrolidine corrosion inhibitor for mild steel in HCl: combining gravimetric, electrochemical, and DFT approaches. Sci Rep 2023; 13:9770. [PMID: 37328536 DOI: 10.1038/s41598-023-36252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
The corrosion inhibition properties of 2-(1,3,4-thiadiazole-2-yl)pyrrolidine (2-TP) on mild steel in a 1 M HCl solution were investigated using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP) measurements. In addition, DFT calculations were performed on 2-TP. The polarization curves revealed that 2-TP is a mixed-type inhibitor. The results indicate that 2-TP is an effective inhibitor for mild steel corrosion in a 1.0 M HCl solution, with an inhibition efficiency of 94.6% at 0.5 mM 2-TP. The study also examined the impact of temperature, revealing that the inhibition efficiency increases with an increasing concentration of 2-TP and decreases with a rise in temperature. The adsorption of the inhibitor on the mild steel surface followed the Langmuir adsorption isotherm, and the free energy value indicated that the adsorption of 2-TP is a spontaneous process that involves both physical and chemical adsorption mechanisms. The DFT calculations showed that the adsorption of 2-TP on the mild steel surface is mainly through the interaction of the lone pair of electrons on the nitrogen atom of the thiadiazole ring with the metal surface. The results obtained from the weight loss, potentiodynamic polarization, EIS and OCP measurements were in good agreement with each other and confirmed the effectiveness of 2-TP as a corrosion inhibitor for mild steel in 1.0 M HCl solution. Overall, the study demonstrates the potential use of 2-TP as a corrosion inhibitor in acid environments.
Collapse
Affiliation(s)
- Ahmed Al-Amiery
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
- University of Technology-Iraq, Energy and Renewable Energies Technology Center, Bagdad, Iraq.
| | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
| | | |
Collapse
|
5
|
Recent Overview of Potent Antioxidant Activity of Coordination Compounds. Antioxidants (Basel) 2023; 12:antiox12020213. [PMID: 36829772 PMCID: PMC9952845 DOI: 10.3390/antiox12020213] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
During recent decades, the complexation of organic ligands toward several metal ions of s-p and d-block has been applied as a plan to enhance its antioxidant performance. Due to their wide range of beneficial impacts, coordination compounds are widely used in industries, specifically in the medicinal and pharmaceutical fields. The activity is generally improved by chelation consequently knowing that the characteristics of both ligands and metals can lead to the development of greatly active compounds. Chelation compounds are a substitute for using the traditional synthetic antioxidants, because metal chelates present benefits, including a variety in geometry, oxidation states, and coordination number, that assist and favor the redox methods associated with antioxidant action. As well as understanding the best studied anti-oxidative assets of these compounds, coordination compounds are involved in the free radical scavenging process and protecting human organisms from the opposing effects of these radicals. The antioxidant ability can be assessed by various interrelated systems. The methodological modification offers the most knowledge on the antioxidant property of metal chelates. Colorimetric techniques are the most used, though electron paramagnetic resonance (EPR) is an alternative for metallic compounds, since color does not affect the results. Information about systems, with their benefits, and restrictions, permits a dependable valuation of the antioxidant performance of coordination compounds, as well as assisting application in various states wherever antioxidant drugs are required, such as in food protection, appropriate good-packaged foods, dietary supplements, and others. Because of the new exhaustive analysis of organic ligands, it has become a separate field of research in chemistry. The present investigation will be respected for providing a foundation for the antioxidant properties of organic ligands, future tests on organic ligands, and building high-quality antioxidative compounds.
Collapse
|
6
|
El-Azabawy OE, Higazy SA, Al-Sabagh AM, Abdel-Rahman AA, Nasser NM, Khamis EA. Studying the Temperature Influence on Carbon Steel in Sour Petroleum Media Using Facilely-Designed Schiff Base Polymers as Corrosion Inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|