1
|
Gao F, Mora MC, Constantinides M, Coënon L, Multrier C, Vaillant L, Peyroux J, Zhang T, Villalba M. Feeder cell training shapes the phenotype and function of in vitro expanded natural killer cells. MedComm (Beijing) 2024; 5:e740. [PMID: 39314886 PMCID: PMC11417427 DOI: 10.1002/mco2.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Natural killer (NK) cells are candidates for adoptive cell therapy, and the protocols for their activation and expansion profoundly influence their function and fate. The complexity of NK cell origin and feeder cell cues impacts the heterogeneity of expanded NK (eNK) cells. To explore this, we compared the phenotype and function of peripheral blood-derived NK (PB-NK) and umbilical cord blood-derived NK (UCB-NK) cells activated by common feeder cell lines, including K562, PLH, and 221.AEH. After first encounter, most PB-NK cells showed degranulation independently of cytokines production. Meanwhile, most UCB-NK cells did both. We observed that each feeder cell line uniquely influenced the activation, expansion, and ultimate fate of PB eNK and UCB eNK cells, determining whether they became cytokine producers or killer cells. In addition, they also affected the functional performance of NK cell subsets after expansion, that is, expanded conventional NK (ecNK) and expanded FcRγ- NK (eg-NK) cells. Hence, the regulation of eNK cell function largely depends on the NK cell source and the chosen expansion system. These results underscore the significance of selecting feeder cells for NK cell expansion from various sources, notably for customized adoptive cell therapies to yield cytokine-producing or cytotoxic eNK cells.
Collapse
Affiliation(s)
- Fei Gao
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Department of PathologySchool of Basic MedicineCentral South UniversityChangshaChina
| | | | | | - Loïs Coënon
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | | | - Loïc Vaillant
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Julien Peyroux
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Tianxiang Zhang
- Department of ImmunobiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Martin Villalba
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Institut du Cancer Avignon‐Provence Sainte CatherineAvignonFrance
- IRMBUniv MontpellierINSERMCHU MontpellierCNRSMontpellierFrance
| |
Collapse
|
2
|
Alekseeva NA, Streltsova MA, Vavilova JD, Ustiuzhanina MO, Palamarchuk AI, Boyko AA, Timofeev ND, Popodko AI, Kovalenko EI. Obtaining Gene-Modified HLA-E-Expressing Feeder Cells for Stimulation of Natural Killer Cells. Pharmaceutics 2024; 16:133. [PMID: 38276503 PMCID: PMC10818548 DOI: 10.3390/pharmaceutics16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously shown the capacity to enhance adaptive NK cell response. The obtained K562-21E cell line was employed to investigate proliferative responses of the CD57- NK cell subset of HCMV-seropositive and seronegative donors. Stimulation of CD57- NK cells with K562-21E/peptide resulted in an increased cell expansion during the 12-day culturing period, regardless of the serological HCMV status of the donor. The enhanced proliferation in response to the peptide was associated with a greater proportion of CD56brightHLA-DR+ NK cells. In later stages of cultivation, the greatest proliferative response to K562-21E/peptide was shown for a highly HCMV-seropositive donor. These expanded NK cells were characterized by the accumulation of CD57-KIR2DL2/3+NKG2C+NKG2A- cells, which are hypothesized to represent adaptive NK cell progenitors. The K562-21E feeder cells can be applied both for the accumulation of NK cells as therapeutic effectors, and for the study of NK cell maturation into the adaptive state after the HLA-E peptide presentation.
Collapse
Affiliation(s)
- Nadezhda A. Alekseeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Maria A. Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Julia D. Vavilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Maria O. Ustiuzhanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Anastasia I. Palamarchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Anna A. Boyko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Nikita D. Timofeev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Alexey I. Popodko
- Department of Radiation Oncology, European Medical Center, Schepkina 35, 129110 Moscow, Russia;
| | - Elena I. Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| |
Collapse
|
3
|
Momayyezi P, Bilev E, Ljunggren HG, Hammer Q. Viral escape from NK-cell-mediated immunosurveillance: A lesson for cancer immunotherapy? Eur J Immunol 2023; 53:e2350465. [PMID: 37526136 DOI: 10.1002/eji.202350465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that participate in immune responses against virus-infected cells and tumors. As a countermeasure, viruses and tumors employ strategies to evade NK-cell-mediated immunosurveillance. In this review, we examine immune evasion strategies employed by viruses, focusing on examples from human CMV and severe acute respiratory syndrome coronavirus 2. We explore selected viral evasion mechanisms categorized into three classes: (1) providing ligands for the inhibitory receptor NKG2A, (2) downregulating ligands for the activating receptor NKG2D, and (3) inducing the immunosuppressive cytokine transforming growth factor (TGF)-β. For each class, we draw parallels between immune evasion by viruses and tumors, reviewing potential opportunities for overcoming evasion in cancer therapy. We suggest that in-depth investigations of host-pathogen interactions between viruses and NK cells will not only deepen our understanding of viral immune evasion but also shed light on how NK cells counter such evasion attempts. Thus, due to the parallels of immune evasion by viruses and tumors, we propose that insights gained from antiviral NK-cell responses may serve as valuable lessons that can be leveraged for designing future cancer immunotherapies.
Collapse
Affiliation(s)
- Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Eleni Bilev
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|