1
|
Almeida Júnior ASD, Freitas Viana Leal MM, Marques DSC, Silva ALD, Souza Bezerra RD, Siqueira de Souza YF, Mendonça Silveira ME, Santos FA, Alves LC, de Lima Aires A, Cruz Filho IJD, do Carmo Alves de Lima M. Therapeutic potential of hydantoin and thiohydantoin compounds against Schistosoma mansoni: An integrated in vitro, DNA, ultrastructural, and ADMET in silico approach. Mol Biochem Parasitol 2024; 260:111646. [PMID: 38950658 DOI: 10.1016/j.molbiopara.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
The study aimed to conduct in vitro biological assessments of hydantoin and thiohydantoin compounds against mature Schistosoma mansoni worms, evaluate their cytotoxic effects and predict their pharmacokinetic parameters using computational methods. The compounds showed low in vitro cytotoxicity and were not considered hemolytic. Antiparasitic activity against adult S. mansoni worms was tested with all compounds at concentrations ranging from 200 to 6.25 μM. Compounds SC01, SC02, and SC03 exhibited low activity. Compounds SC04, SC05, SC06 and SC07 caused 100 % mortality within 24 h of incubation at a concentration of 100 and 200 μM. Thiohydantoin SC04 exhibited the highest activity, resulting in 100 % mortality after 24 h of incubation at a concentration of 50 μM and IC50 of 28 µM. In the ultrastructural analysis (SEM), the compound SC04 (200 µM) induced integumentary changes, formation of integumentary blisters, and destruction of tubercles and spicules. Therefore, the SC04 compound shows promise as an antiparasitic against S. mansoni.
Collapse
Affiliation(s)
- Antônio Sérgio de Almeida Júnior
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Mayse Manuele Freitas Viana Leal
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Diego Santa Clara Marques
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil.
| | - Anekécia Lauro da Silva
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Rafael de Souza Bezerra
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Yandra Flaviana Siqueira de Souza
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Maria Eduardade Mendonça Silveira
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Fábio Ab Santos
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - Luiz Carlos Alves
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - André de Lima Aires
- Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| |
Collapse
|
2
|
Ngema L, Adeyemi SA, Marimuthu T, Ubanako PN, Ngwa W, Choonara YE. Short Antiangiogenic MMP-2 Peptide-Decorated Conjugated Linoleic Acid-Coated SPIONs for Targeted Paclitaxel Delivery in an A549 Cell Xenograft Mouse Tumor Model. ACS OMEGA 2024; 9:700-713. [PMID: 38222506 PMCID: PMC10785664 DOI: 10.1021/acsomega.3c06489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024]
Abstract
The design of targeted antiangiogenic nanovectors for the delivery of anticancer drugs presents a viable approach for effective management of nonsmall-cell lung carcinoma (NSCLC). Herein, we report on the fabrication of a targeted delivery nanosystem for paclitaxel (PTX) functionalized with a short antimatrix metalloproteinase 2 (MMP-2) CTT peptide for selective MMP-2 targeting and effective antitumor activity in NSCLC. The fabrication of the targeted nanosystem (CLA-coated PTX-SPIONs@CTT) involved coating of superparamagnetic iron-oxide nanoparticles (SPIONs) with conjugated linoleic acid (CLA) via chemisorption, onto which PTX was adsorbed, and subsequent surface functionalization with carboxylic acid groups for conjugation of the CTT peptide. CLA-coated PTX SPIONs@CTT had a mean particle size of 99.4 nm and a PTX loading efficiency of ∼98.5%. The nanosystem exhibited a site-specific in vitro PTX release and a marked antiproliferative action on lung adenocarcinoma cells. The CTT-functionalized nanosystem significantly inhibited MMP-2 secretion by almost 70% from endothelial cells, indicating specific anti-MMP-2 activity. Treatment of tumor-bearing mice with subcutaneous injection of the CTT-functionalized nanosystem resulted in 69.7% tumor inhibition rate, and the administration of the nanosystem subcutaneously prolonged the half-life of PTX and circulation time in vivo. As such, CLA-coated PTX-SPIONs@CTT presents with potential for application as a targeted nanomedicine in NSCLC management.
Collapse
Affiliation(s)
- Lindokuhle
M. Ngema
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Samson A. Adeyemi
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Thashree Marimuthu
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Philemon N. Ubanako
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Wilfred Ngwa
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins Medicine, Baltimore, Maryland 21218, United States
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
3
|
Lee PC, Stewart S, Amelkina O, Sylvester H, He X, Comizzoli P. Trehalose delivered by cold-responsive nanoparticles improves tolerance of cumulus-oocyte complexes to microwave drying. J Assist Reprod Genet 2023; 40:1817-1828. [PMID: 37261586 PMCID: PMC10371938 DOI: 10.1007/s10815-023-02831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE Trehalose is a non-permeable protectant that is the key to preserve live cells in a dry state for potential storage at ambient temperatures. After intracellular trehalose delivery via cold-responsive nanoparticles (CRNPs), the objective was to characterize the tolerance of cat cumulus-oocyte complexes (COCs) to different levels of microwave-assisted dehydration. METHODS Trehalose was first encapsulated in CRNPs. After exposure to trehalose-laden CRNPs, different water amounts were removed from cat COCs by microwave drying. After each dehydration level, meiotic and developmental competences were evaluated via in vitro maturation, fertilization, and embryo culture. In addition, expressions of critical genes were assessed by quantitative RT-PCR. RESULTS CRNPs effectively transported trehalose into COCs within 4 h of co-incubation at 38.5 °C followed by a cold-triggered release at 4 °C for 15 min. Intracellular presence of trehalose enabled the maintenance of developmental competence (formation of blastocysts) as well as normal gene expression levels of HSP70 and DNMT1 at dehydration levels reaching up to 63% of water loss. CONCLUSION Intracellular trehalose delivery through CRNPs improves dehydration tolerance of COCs, which opens new options for oocyte storage and fertility preservation at ambient temperatures.
Collapse
Affiliation(s)
- Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Hannah Sylvester
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA.
| |
Collapse
|
4
|
Boudier A, Le Faou A. Nanoparticles and Other Nanostructures and the Control of Pathogens: From Bench to Vaccines. Int J Mol Sci 2023; 24:ijms24109063. [PMID: 37240409 DOI: 10.3390/ijms24109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Parasites and microorganisms (protozoa, bacteria, and viruses) are still a concern despite progress in hygiene and anti-infectious therapy [...].
Collapse
Affiliation(s)
- Ariane Boudier
- Faculty of Pharmacy, Université de Lorraine, F-54000 Nancy, France
| | - Alain Le Faou
- Faculty of Pharmacy, Université de Lorraine, F-54000 Nancy, France
- Faculty of Medicine, Maieutic and Health Sciences, University of Lorraine, Pole Brabois Santé, F-54000 Nancy, France
| |
Collapse
|