1
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
2
|
Zhang Y, Cui J, Cang Z, Pei J, Zhang X, Song B, Fan X, Ma X, Li Y. Hair follicle stem cells promote epidermal regeneration under expanded condition. Front Physiol 2024; 15:1306011. [PMID: 38455843 PMCID: PMC10917960 DOI: 10.3389/fphys.2024.1306011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Skin soft tissue expansion is the process of obtaining excess skin mixed with skin development, wound healing, and mechanical stretching. Previous studies have reported that tissue expansion significantly induces epidermal proliferation throughout the skin. However, the mechanisms underlying epidermal regeneration during skin soft tissue expansion are yet to be clarified. Hair follicle stem cells (HFSCs) have been recognized as a promising approach for epidermal regeneration. This study examines HFSC-related epidermal regeneration mechanisms under expanded condition and proposes a potential method for its cellular and molecular regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xing Fan
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Xinling Z, Zhongyang S, Yujie C, Zhiyu L, Zhenmin Z, Hongyi Z. Coexpression analysis of angiogenesis, proliferation, apoptosis, autophagy and SHH pathway genes involved in skin expansion. Arch Biochem Biophys 2023; 750:109773. [PMID: 37944780 DOI: 10.1016/j.abb.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Skin and soft tissue expansion is a widely used technique in plastic surgery. However, the regulatory mechanisms associated with cellular processes involved in skin expansion are not well elucidated. In the present study, we aimed at exploring the transcriptome changes associated with skin expansion and profiling the difference in gene expression between the skin tissue in the top of the dilator and the skin tissue in the side of the dilator. A mouse model of skin expansion was established and RNA sequencing (RNA-Seq) was performed on samples collected at different time points. Differential expression analysis was performed using the DESeq2 package while STEM was used for time series clustering profiling. The regulatory networks were established and the functions of sets of genes were analyzed. The mRNA expression levels of candidate genes were validated by the quantitative RT-PCR. Among the skin tissue in the top of the dilator and normal samples at days 1, 3, 7, 14 and 28, 53 commonly upregulated and 7 commonly downregulated genes were identified while among the skin tissue in the side of the dilator and normal samples, 98 downregulated and 255 upregulated genes were identified. Genes differentially expressed among the skin tissue in the top of the dilator and normal samples were involved in coagulation and proliferation-associated pathways while those among the skin tissue in the side of the dilator and normal samples were involved in the inflammation, immune response, and defense response. Among the skin tissue in the top of the dilator and the skin tissue in the side of the dilator samples, 161 were constantly upregulated while 27 were constantly downregulated; these genes were enriched in the biological processes of cell adhesion and regulation of cell proliferation (n = 11). Furthermore, we identified that SHH signaling genes formed a coexpression regulatory network with cellular proliferation, apoptosis, autophagy and angiogenesis-related genes in the expanded skin. In conclusion, our findings can promote research and understanding of the mechanism of skin expansion and will find application in plastic surgery.
Collapse
Affiliation(s)
- Zhang Xinling
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Sun Zhongyang
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Chen Yujie
- Plastic Surgery Department, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - Lin Zhiyu
- Plastic Surgery Department, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - Zhao Zhenmin
- Plastic Surgery Department, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, PR China.
| | - Zhao Hongyi
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
4
|
Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The Roles of WNT Signaling Pathways in Skin Development and Mechanical-Stretch-Induced Skin Regeneration. Biomolecules 2023; 13:1702. [PMID: 38136575 PMCID: PMC10741662 DOI: 10.3390/biom13121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of The Cadet Team 6, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
5
|
Caruntu C, Ilie MA, Neagu M. Looking into the Skin in Health and Disease: From Microscopy Imaging Techniques to Molecular Analysis. Int J Mol Sci 2023; 24:13737. [PMID: 37762038 PMCID: PMC10531494 DOI: 10.3390/ijms241813737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The skin is a complex organ that includes a wide variety of tissue types with different embryological origins [...].
Collapse
Affiliation(s)
- Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | | | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
6
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
7
|
Zhang X, Chen Y, Ding P, Lin Z, Sun Z, Jin M, Li C, Zhao Z, Bi H. The SHH-GLI1 pathway is required in skin expansion and angiogenesis. Exp Dermatol 2023. [PMID: 37190906 DOI: 10.1111/exd.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
To investigate the role of GLI1 on skin proliferation and neovascularization during skin expansion in mice. We constructed GLI1-cre/R26-Tdtomato and GLI1-cre/R26-mtmg gene-tagged skin expansion mouse models. Using a two-photon in vivo imaging instrument to observe the changes in the number and distribution of GLI1(+) cells during the expansion process and to clarify the spatial relationship between GLI1(+) cells and blood vessels during the expansion process. In vitro proliferation assays were performed to further validate the effects of SHH (sonic hedgehog) and its downstream component GLI1 on cell proliferation viability. Finally, qRT-PCR was used to verify the changes in proliferation, angiogenesis-related factors, SHH signalling pathway-related factors, and the role of GLI1 cells in the process of skin expansion in mice. The number of GLI1(+) cells increased during dilation and were attached to the outer membrane of the vessel. The epidermis was thickened and the dermis thinned after the dilated skin was taken, while the epidermal thickening was suppressed and the dermis became thinner after the GLI1 cells were inhibited. The non-inhibited group showed a significant increase in PCNA positivity with prolonged dilation compared to the GANT61(GLI specificity inhibitor) inhibited group; CD31 immunofluorescence showed a significant increase in the number of dilated skin vessels and a significant decrease in the number of vessels after treatment with GANT61 inhibitor. In vitro proliferation results showed that SHH signalling activator significantly increased the proliferation viability of GLI1(+) hair follicle mesenchymal stem cells, while GNAT61 significantly inhibited the proliferation viability of GLI1(+) hair follicle mesenchymal stem cells. GLI1 is necessary for proliferation and neovascularization in expansion skin of mice through activation of the SHH signalling pathway.
Collapse
Affiliation(s)
- Xinling Zhang
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yujie Chen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Zhiyu Lin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Zhixuan Sun
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Mengying Jin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Oswaldo JIE, Tripodi D, Al-Shaqsi Y, Woods OEF, Valero R. Effects of mechanical forces on the formation of cutaneous wounds during skin expansion and emerging therapies for wound healing and scar prevention. Saudi Med J 2023; 44:106-109. [PMID: 36634956 PMCID: PMC9987685 DOI: 10.15537/smj.2023.44.1.20220556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/23/2022] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To update a possible role of cosmeceutical topic treatment to obtain a better scar. METHODS This is a preliminary supportive study. A total of 14 patients who went to the General Hospital of Mexico City, Mexico, between May and December 2020, for breast reconstruction were included in the current study. The biopsies were carried out to the scar area of the previous I° and II° surgery. The patients were thus divided into 2 groups: those who used Cicolea cream® as a treatment supplement and those who used only petrolatum. RESULTS Collagen fibers arranged in a regular pattern in the group treated with Cicolea compared to dispersed collagen fibers in the group treated with pure petrolatum. Furthermore, the patients who presented hypertrophic or keloid scars secondary to mastectomy, developed after insertion of breast expanders an organized scarring process, with improvement of scar if treated with Cicolea. CONCLUSION Based on our observations, it is possible to propose that the action of the polyphenols present in the different components of Cicolea® cream leads to a better evolution of the wound healing compared to the action of petrolatum composition.
Collapse
Affiliation(s)
- Jiménez Ibañez E. Oswaldo
- From the Plastic, Aesthetic and Reconstructive Surgery Mexico City (Oswaldo, Eduardo), from the Lucerna Medical Center, German Gedovius Tijiuana Mexico (Valero), Mexico, from the Department of Surgical Sciences (Tripodi), Sapienza University of Rome, Rome, Italy, and from the Division on Pediatric Urology (Al-Shaqsi), CHU Sainte- Justine, Montreal, Canada.
- Address correspondence and reprints request to: Dr. Domenico Tripodi, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy. E-mail: ORCID ID: https://orcid.org/0000-0002-4190-8168
| | - Domenico Tripodi
- From the Plastic, Aesthetic and Reconstructive Surgery Mexico City (Oswaldo, Eduardo), from the Lucerna Medical Center, German Gedovius Tijiuana Mexico (Valero), Mexico, from the Department of Surgical Sciences (Tripodi), Sapienza University of Rome, Rome, Italy, and from the Division on Pediatric Urology (Al-Shaqsi), CHU Sainte- Justine, Montreal, Canada.
- Address correspondence and reprints request to: Dr. Domenico Tripodi, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy. E-mail: ORCID ID: https://orcid.org/0000-0002-4190-8168
| | - Yousuf Al-Shaqsi
- From the Plastic, Aesthetic and Reconstructive Surgery Mexico City (Oswaldo, Eduardo), from the Lucerna Medical Center, German Gedovius Tijiuana Mexico (Valero), Mexico, from the Department of Surgical Sciences (Tripodi), Sapienza University of Rome, Rome, Italy, and from the Division on Pediatric Urology (Al-Shaqsi), CHU Sainte- Justine, Montreal, Canada.
- Address correspondence and reprints request to: Dr. Domenico Tripodi, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy. E-mail: ORCID ID: https://orcid.org/0000-0002-4190-8168
| | - Oscar E. Flores Woods
- From the Plastic, Aesthetic and Reconstructive Surgery Mexico City (Oswaldo, Eduardo), from the Lucerna Medical Center, German Gedovius Tijiuana Mexico (Valero), Mexico, from the Department of Surgical Sciences (Tripodi), Sapienza University of Rome, Rome, Italy, and from the Division on Pediatric Urology (Al-Shaqsi), CHU Sainte- Justine, Montreal, Canada.
- Address correspondence and reprints request to: Dr. Domenico Tripodi, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy. E-mail: ORCID ID: https://orcid.org/0000-0002-4190-8168
| | - Rodrigo Valero
- From the Plastic, Aesthetic and Reconstructive Surgery Mexico City (Oswaldo, Eduardo), from the Lucerna Medical Center, German Gedovius Tijiuana Mexico (Valero), Mexico, from the Department of Surgical Sciences (Tripodi), Sapienza University of Rome, Rome, Italy, and from the Division on Pediatric Urology (Al-Shaqsi), CHU Sainte- Justine, Montreal, Canada.
- Address correspondence and reprints request to: Dr. Domenico Tripodi, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy. E-mail: ORCID ID: https://orcid.org/0000-0002-4190-8168
| |
Collapse
|