1
|
Alserhani GS, Mohamed ME, Younis NS. Mitigating cyclophosphamide-induced hepatorenal toxicity: Linalool's role in modulating oxidative stress, inflammation, and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04042-w. [PMID: 40100375 DOI: 10.1007/s00210-025-04042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Cyclophosphamide (CP) is associated with detrimental side effect including hepatic and renal toxicities. Linalool (LIN), acyclic monoterpene alcohol, is acquired from several plants' essential oils. Rats were disseminated into four groups. Group 1: Normal and Cyclophosphamide (CP) groups in which rats were given normal saline or CP intraperitoneally (200 mg/kg, ip on 12nd). Group 3 and 4 (LIN 50 + CP and LIN 100 + CP) groups in which rats were administered LIN (50 or 100 mg/kg) orally for 14 days and CP (200 mg/kg, ip on 12nd). Assessment of hepatic and renal function tests and histopathological examination were performed. Oxidative stress indicators, inflammatory mediators, and apoptosis markers in hepatic and renal homogenates were assessed. JAK2/STAT3/NFκB gene expression was measured. The network pharmacology study suggests JAK2 as one the targets so molecular docking of LIN against JAK2 was accomplished. LIN administration with CP resulted in a significant reduction in liver function test including ALT, AST, LDL, bilirubin, and γGTT1 and in renal function markers including BUN, creatinine, uric acid, Kim-1, NGAL, and CysC. Also, LIN increases in antioxidant ability via enhancing GST, GSH-Px, GSH-R, SOD, and catalase as well as a declining NO, MDA levels. Furthermore, LIN significantly diminished JAK2/STAT3/NFκB gene expressions with subsequent reduction in the inflammatory markers including TNF-α, MPO, ICAM-1, IL-6, and IL-1β levels and the apoptotic markers Bax and cleavage caspase-3 and 9. LIN protected the hepatic and renal tissues from ROS damage and mitigated JAK2/STAT3/NFκB with subsequent anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Gharam Saad Alserhani
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Pharmaceutical Care Management, Aljouf Health Cluster, Aljouf, Saudi Arabia
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Nancy Safwat Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
2
|
Tian M, Wu J, Du Q, Han J, Yang M, Li X, Li M, Ding X, Song Y. Revealing the Mechanisms of Shikonin Against Diabetic Wounds: A Combined Network Pharmacology and In Vitro Investigation. J Diabetes Res 2025; 2025:4656485. [PMID: 40225010 PMCID: PMC11986939 DOI: 10.1155/jdr/4656485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/29/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Shikonin (SHK) possesses extensive pharmacological effects including antimicrobial and anti-inflammatory properties for diabetic wound (DW), while its molecular mechanism remains to be clarified. In this study, we investigated the potential mechanisms of SHK in treating DW by combining network pharmacology and in vitro experiments. Methods: We obtained potential targets for SHK and DW from the publicly available database. Based on the interaction network and conducting GO and KEGG pathway enrichment analysis, we constructed a target pathway network to explore the relationship between SHK and DW. To validate the mechanism of SHK, we established an in vitro experimental model. Results: Sixty intersecting targets between SHK and DW were obtained, and the top 10 targets of the protein-protein interaction (PPI) network included AKT1, SRC, EGFR, CASP3, MMP9, PPARG, ESR1, ANXA5, MMP2, and JAK2. Based on target-pathway networks, the PI3K-AKT signaling pathway was found to be a signaling pathway with low p value in enrichment analysis. In vitro experiments revealed that SHK significantly promoted angiogenesis. Meanwhile, SHK could inhibit the high glucose-induced human umbilical vein endothelial cell dysfunction through regulating the PI3K-AKT pathway. Conclusion: This study initially revealed the molecular mechanism of SHK in DW by multitarget and multipathway. The PI3K-AKT signaling pathway, MAPK signaling pathway, and AGE-RAGE signaling pathways may be the main pathways of SHK in treating DW.
Collapse
Affiliation(s)
- Meng Tian
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Du
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiale Han
- Stomatology Hospital Affiliated to Tongji University, Tongji University, Shanghai, China
| | - Meng Yang
- Department of Cosmetic Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiang Li
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mingzhu Li
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaofeng Ding
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yeqiang Song
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
El Safadi M, Ahmad QUA, Majeebullah M, Ali A, Al-Emam A, Antoniolli G, Shah TA, Salamatullah AM. Palliative potential of velutin against abamectin induced cardiac toxicity via regulating JAK1/STAT3, NF-κB, Nrf-2/Keap-1 signaling pathways: An insight from molecular docking. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106117. [PMID: 39477578 DOI: 10.1016/j.pestbp.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 11/07/2024]
Abstract
Abamectin (ABN) is an agricultural insecticide that is reported to damage various body organs including the heart. Velutin (VLN) is a plant-derived flavonoid that exhibits a wide range of medicinal properties. This study was planned to investigate the medicinal value of VLN against ABN induced cardiotoxicity in rats. Thirty-two male albino rats (Rattus norvegicus) were divided into four equal groups including the control, ABN (10 mg/kg), ABN (10 mg/kg) + VLN (20 mg/kg), and VLN (20 mg/kg) alone administrated group. The doses were administrated for 6 weeks orally. The results demonstrated that ABN intoxication promoted the gene expression of Nrf-2 and its associated antioxidant genes including glutathione reductase (GSR), heme‑oxygenase-1 (HO-1), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) while reducing the gene expression of Keap-1 as well as levels of ROS and MDA. Moreover, ABN exposure enhanced the gene expression of Janus kinase-1 (JAK1), Signal transducer and activator of transcription-3 (STAT3), NF-κB, TNF-α, C-reactive proteins, Interferon-gamma-induced protein 10 (IP-10), IL-1β, Monocyte chemoattractant protein-1 (MCP-1), IL-6 and COX-2. The concentrations of CK-MB, Brain natriuretic peptide (BNP), CPK, troponin-I, N-terminal pro b-type natriuretic peptide (NT-proBNP) and LDH were elevated after ABN administration. ABN intoxication abruptly upregulated the levels of Caspase-3, Caspase-9 and Bax while reducing the levels of Bcl-2 in cardiac tissues. Additionally, ABN exposure prompted various histopathological damages. Nevertheless, VLN treatment remarkably protected the cardiac tissues via regulating aforementioned disruptions. Lastly, molecular docking analysis was performed to determine the potential affinity of VLN and targeted protein i.e., Bax, NF-kB, Nrf-2/Keap1, JAK1 and STAT3. Our in-silico evaluation showed a strong binding affinitybetween VLN and the targeted proteins which further confirms its effectiveness as a cardioprotective agent.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Qurat-Ul-Ain Ahmad
- Department of Zoology, Division of Sciences and Technology, University of Education Township Lahore, Pakistan
| | - Muhammad Majeebullah
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Ali
- Department of Zoology, University of Education, Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| | | | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P. O. Box 2460, Riyad, 11451, Saudi Arabia
| |
Collapse
|
4
|
Ahmed EA, Abdelsalam SA. Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach. Curr Issues Mol Biol 2024; 46:10635-10650. [PMID: 39329982 PMCID: PMC11430628 DOI: 10.3390/cimb46090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
A treasure trove of naturally occurring biomolecules can be obtained from sea living organisms to be used as potential antioxidant and anti-inflammatory agents. These bioactive molecules can target signaling molecules involved in the severity of chronic autoimmune diseases such as rheumatoid arthritis (RA). The intracellular tyrosine kinases family, Janus kinases (JAKs, includes JAK1, JAK2, and JAK3), is implicated in the pathogenesis of RA through regulating several cytokines and inflammatory processes. In the present study, we conducted molecular docking and structural analysis investigations to explore the role of a set of bioactive molecules from marine sources that can be used as JAKs' specific inhibitors. Around 200 antioxidants and anti-inflammatory molecules out of thousands of marine molecules found at the Comprehensive Marine Natural Products Database (CMNPD) website, were used in that analysis. The details of the interacting residues were compared to the recent FDA approved inhibitors tofacitinib and baricitinib for data validation. The shortlisted critical amino acids residues of our pharmacophore-based virtual screening were LYS905, GLU957, LEU959, and ASP1003 at JAK1, GLU930 and LEU932 at JAK2, and GLU905 and CYS909 of JAK3. Interestingly, marine biomolecules such as Sargachromanol G, Isopseudopterosin E, Seco-Pseudopterosin, and CID 10071610 showed specific binding and significantly higher binding energy to JAK1 active/potential sites when being compared with the approved inhibitors. In addition, Zoanthoxanthin and Fuscoside E bind to JAK2's critical residues, GLU930 and LEU932. Moreover, Phorbaketal and Fuscoside E appear to be potential candidates that can inhibit JAK3 activity. These results were validated using molecular dynamics simulation for the docked complexes, JAK1(6sm8)/SG, JAK2 (3jy9)/ZAX, and JAK3 (6pjc)/Fuscoside E, where stable and lower binding energy were found based on analyzing set of parameters, discussed below (videos are attached). A promising role of these marine bioactive molecules can be confirmed in prospective preclinical/clinical investigations using rheumatoid arthritis models.
Collapse
Affiliation(s)
- Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Hofouf 31982, Saudi Arabia
- Lab of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Salah A. Abdelsalam
- Lab of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
- Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
5
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|