1
|
Bombaça ACS, Caminha MA, Barbosa JMC, Pedra-Rezende Y, Ennes-Vidal V, Brunoro GVF, Archanjo BS, d'Avila CM, Valente RH, Menna-Barreto RFS. Heme metabolism in Strigomonas culicis: Implications of H 2O 2 resistance induction and symbiont elimination. J Biol Chem 2024; 300:107692. [PMID: 39159809 DOI: 10.1016/j.jbc.2024.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Monoxenous trypanosomatid Strigomonas culicis harbors an endosymbiotic bacterium, which enables the protozoa to survive without heme supplementation. The impact of H2O2 resistance and symbiont elimination on intracellular heme and Fe2+ availability was analyzed through a comparison of WT strain with both WT H2O2-resistant (WTR) and aposymbiotic (Apo) protozoa. The relative quantification of the heme biosynthetic pathway through label-free parallel reaction monitoring targeted mass spectrometry revealed that H2O2 resistance does not influence the abundance of tryptic peptides. However, the Apo strain showed increased coproporphyrinogen III oxidase and ferrochelatase levels. A putative ferrous iron transporter, homologous to LIT1 and TcIT from Leishmania major and Trypanosoma cruzi, was identified for the first time. Label-free parallel reaction monitoring targeted mass spectrometry also showed that S. culicis Iron Transporter (ScIT) increased 1.6- and 16.4-fold in WTR and Apo strains compared to WT. Accordingly, antibody-mediated blockage of ScIT decreased by 28.0% and 40.0% intracellular Fe2+concentration in both WTR and Apo strains, whereas no effect was detected in WT. In a heme-depleted medium, adding 10 μM hemin decreased ScIT transcript levels in Apo, whereas 10 μM PPIX, the substrate of ferrochelatase, increased intracellular Fe2+ concentration and ferric iron reduction. Overall, the data suggest mechanisms dependent on de novo heme synthesis (and its substrates) in the Apo strain to overcome reduced heme availability. Given the importance of heme and Fe2+ as cofactors in metabolic pathways, including oxidative phosphorylation and antioxidant systems, this study provides novel mechanistic insights associated with H2O2 resistance in S. culicis.
Collapse
Affiliation(s)
- Ana Cristina Souza Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelle Almeida Caminha
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | | - Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | - Vitor Ennes-Vidal
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Bráulio Soares Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, Brazil
| | - Claudia Masini d'Avila
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | |
Collapse
|
2
|
Horáková E, Vrbacký M, Tesařová M, Stříbrná E, Pilný J, Vavrušková Z, Vancová M, Sobotka R, Lukeš J, Perner J. Haptoglobin is dispensable for haemoglobin uptake by Trypanosoma brucei. Front Immunol 2024; 15:1441131. [PMID: 39114668 PMCID: PMC11304504 DOI: 10.3389/fimmu.2024.1441131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
Haptoglobin is a plasma protein of mammals that plays a crucial role in vascular homeostasis by binding free haemoglobin released from ruptured red blood cells. Trypanosoma brucei can exploit this by internalising haptoglobin-haemoglobin complex to acquire host haem. Here, we investigated the impact of haptoglobin deficiency (Hp-/-) on T. brucei brucei infection and the parasite´s capacity to internalise haemoglobin in a Hp-/- mouse model. The infected Hp-/- mice exhibited normal disease progression, with minimal weight loss and no apparent organ pathology, similarly to control mice. While the proteomic profile of mouse sera significantly changed in response to T. b. brucei, no differences in the infection response markers of blood plasma between Hp-/- and control Black mice were observed. Similarly, very few quantitative differences were observed between the proteomes of parasites harvested from Hp-/- and Black mice, including both endogenous proteins and internalised host proteins. While haptoglobin was indeed absent from parasites isolated from Hp-/-mice, haemoglobin peptides were unexpectedly detected in parasites from both Hp-/- and Black mice. Combined, the data support the dispensability of haptoglobin for haemoglobin internalisation by T. b. brucei during infection in mice. Since the trypanosomes knock-outs for their haptoglobin-haemoglobin receptor (HpHbR) internalised significantly less haemoglobin from Hp-/- mice compared to those isolated from Black mice, it suggests that T. b. brucei employs also an HpHbR-independent haptoglobin-mediated mode for haemoglobin internalisation. Our study reveals a so-far hidden flexibility of haemoglobin acquisition by T. b. brucei and offers novel insights into alternative haemoglobin uptake pathways.
Collapse
Affiliation(s)
- Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Marek Vrbacký
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Eva Stříbrná
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jan Pilný
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Zuzana Vavrušková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
3
|
Cabello-Donayre M, Cabello-Donayre I, Guerra D, Orrego LM, Morales JC, Cautain B, Vicente F, Pérez-Victoria JM. A yeast-based high-throughput screen identifies inhibitors of trypanosomatid HRG heme transporters with potent leishmanicidal and trypanocidal activity. Int J Antimicrob Agents 2024; 63:107092. [PMID: 38242251 DOI: 10.1016/j.ijantimicag.2024.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVES New drugs are required to treat neglected diseases caused by trypanosomatid parasites such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi. An Achilles' heel of these parasites is their heme auxotrophy; they have an absolute dependence on scavenging this molecule from the host, and trypanosomatid HRG heme transporters (TrypHRG) play an important role in this process. As these proteins are essential for the parasites and have low similarity with their human orthologue, they have been proposed as attractive therapeutic targets. Here, we have developed two yeast-based assays that allow an inexpensive high-throughput screening of TrypHRG inhibitors within a cellular context. METHODS We first assessed that Leishmania major, Leishmania donovani and T. brucei HRG proteins were heterologously expressed in the digestive vacuole membrane of a mutant heme auxotrophic yeast strain. Here, TrypHRG imports hemoglobinderived heme into the cytosol, allowing mutant yeast to grow in the presence of low hemoglobin concentrations and promoting the activity of hemeproteins such as catalase, which was used as a reporter of cytosolic heme levels. RESULTS In the presence of a TrypHRG inhibitor, both catalase activity (test 1) and yeast growth (test 2) were diminished, being easily monitored. The assays were then tested on a pilot scale for HTS purposes using a collection of repurposing drugs and food antioxidants. Some of the TrypHRG inhibitors identified in yeast presented strong trypanocidal and leishmanicidal activity in the submicromolar range, proving the potential of this approach. CONCLUSIONS Cumulatively, it was shown that the inhibition bioassays developed were robust and applicable to large-scale HTS.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain; Universidad Internacional de La Rioja, Logroño, La Rioja, Spain
| | - Irene Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Diego Guerra
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain; Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|