1
|
Ding Y, Ge M, Zhang C, Yu J, Xia D, He J, Jia Z. Platelets as delivery vehicles for targeted enrichment of NO · to cerebral glioma for magnetic resonance imaging. J Nanobiotechnology 2023; 21:499. [PMID: 38129881 PMCID: PMC10734142 DOI: 10.1186/s12951-023-02245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Using a magnetic resonance imaging (MRI) contrast agent, MRI has made substantial contributions to glioma diagnosis. Metal-free MRI agents, such as the nano free radical nitric oxide (NO·) micelle, can overcome the inherent toxicity of metal-based agents in certain patient populations. However, the low spatial resolution of nano NO· micelle in MRI limits its clinical development. In this study, we pretreated platelets (PLTs) and loaded them with nano NO· micelles to synthesize NO·@PLT, which can overcome the low contrast and poor in vivo stability of nitroxide-based MRI contrast agents. The PLTs can serve as potential drug carriers for targeting and delivering nano NO· micelles to gliomas and thus increase the contrast in T1-weighted imaging (T1WI) of MRI. This drug carrier system uses the unique tumor-targeting ability of PLTs and takes advantage of the high signal presentation of steady nano NO· micelles in T1WI, thereby ultimately achieving signal amplification of glioma in T1WI. With the effect of PLTs-tumor cell adhesion, NO·@PLT has per-nitroxide transverse relativities of approximately 2-fold greater than those of free NO· particles. These features allow a sufficient NO·@PLT concentration to accumulate in murine subcutaneous glioma tumors up from 5 min to 2.5 h (optimum at 1.5 h) after systemic administration. This results in MRI contrast comparable to that of metal-based agents. This study established a promising metal-free MRI contrast agent, NO·@PLT, for glioma diagnosis, because it has superior spatial resolution owing to its high glioma-targeting ability and has significant translational implications in the clinic.
Collapse
Affiliation(s)
- Yuchen Ding
- Department of Medical Imaging, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Medical School of Nantong University, Nantong, 226001, PR China
| | - Min Ge
- Department of Medical Imaging, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Medical School of Nantong University, Nantong, 226001, PR China
| | - Chao Zhang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Juncheng Yu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Medical School of Nantong University, Nantong, 226001, PR China
| | - Donglin Xia
- Department of Medical Imaging, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Medical School of Nantong University, Nantong, 226001, PR China.
- Institute of Biology and Nanotechnology of Nantong University, Nantong, 226019, PR China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, PR China.
| | - Zhongzheng Jia
- Department of Medical Imaging, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Medical School of Nantong University, Nantong, 226001, PR China.
| |
Collapse
|
2
|
Liu Y, Chen X, Liu X, Guan W, Lu C. Aggregation-induced emission-active micelles: synthesis, characterization, and applications. Chem Soc Rev 2023; 52:1456-1490. [PMID: 36734474 DOI: 10.1039/d2cs01021f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aggregation-induced emission (AIE)-active micelles are a type of fluorescent functional materials that exhibit enhanced emissions in the aggregated surfactant state. They have received significant interest due to their excellent fluorescence efficiency in the aggregated state, remarkable processability, and solubility. AIE-active micelles can be designed through the self-assembly of amphipathic AIE luminogens (AIEgens) and the encapsulation of non-emissive amphipathic molecules in AIEgens. Currently, a wide range of AIE-active micelles have been constructed, with a significant increase in research interest in this area. A series of advanced techniques has been used to characterize AIE-active micelles, such as cryogenic-electron microscopy (Cryo-EM) and confocal laser scanning microscopy (CLSM). This review provides an overview of the synthesis, characterization, and applications of AIE-active micelles, especially their applications in cell and in vivo imaging, biological and organic compound sensors, anticancer drugs, gene delivery, chemotherapy, photodynamic therapy, and photocatalytic reactions, with a focus on the most recent developments. Based on the synergistic effect of micelles and AIE, it is anticipated that this review will guide the development of innovative and fascinating AIE-active micelle materials with exciting architectures and functions in the future.
Collapse
Affiliation(s)
- Yuhao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoting Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|