1
|
Zhou C, Liu H, Wang H, Niu S, El-Kassaby YA, Li W. Deciphering the Role of SVP-Like Genes and Their Key Regulation Networks During Reproductive Cone Development in Pinus tabuliformis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39257299 DOI: 10.1111/pce.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Reproductive development plays an essential role in the perpetuation of genetic material and environmental adaptation. In angiosperms, the Short Vegetative Phase (SVP) serves as a flowering repressor, influencing the development of floral organs. In this study, heterologous transformation of Arabidopsis thaliana with SVP-like genes (PtSVL1 and PtSVL2) derived from Pinus tabuliformis significantly impacted stamen formation and pollen fertility, without altering flowering time. Gene co-expression networks revealed that SVP-like and SOC1-like genes function as key coregulatory transcription factors during the initial stages of cone development in P. tabuliformis. Interestingly, the regulatory module of SOC1 regulated by SVP in angiosperms is absent in conifers and conifer SVP-like exercises its function in a form that is physically bound to SOC1-like. Furthermore, combining the yeast one-hybrid scanning with co-expression network analysis, revealed that SPLs and TPSs were the principal downstream target genes of PtSVL1. Notably, the PtSPL16 promoter is positively regulated by PtSVL1, and overexpression of PtSPL16 results in delayed flowering in Arabidopsis, suggesting that the PtSVL1-PtSPL16 module plays a crucial role in regulating reproductive development in conifers. Collectively, these findings enhance our understanding of the roles of SVP-like genes in conifers and the key regulatory networks centred on PtSVL1 during reproductive cone development.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongmei Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Huili Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Wu HL, Zhang SL, Feng X, Zhang YQ, Zhou BJ, Cao M, Wang YP, Guo BS, Hou ZX. Possible Mechanism of Sucrose and Trehalose-6-Phosphate in Regulating the Secondary Flower on the Strong Upright Spring Shoots of Blueberry Planted in Greenhouse. PLANTS (BASEL, SWITZERLAND) 2024; 13:2350. [PMID: 39273834 PMCID: PMC11397707 DOI: 10.3390/plants13172350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Secondary flowering is the phenomenon in which a tree blooms twice or more times a year. Along with the development of blueberry (Vaccinium corymbosum L.) fruits in spring, a large number of secondary flowers on the strong upright spring shoots were noticed in blueberries planted in the greenhouse. To reveal the cause and possible regulatory mechanism of the phenomenon, we clarified the phenological characteristics of flower bud differentiation and development on the spring shoots by combining phenological phenotype with anatomical observation. Furthermore, the changes in carbohydrates, trehalose-6-phosphate (Tre6P), and the relationship among the key enzyme regulatory genes for Tre6P metabolism and the key regulatory genes for flower formation during the differentiation process of apical buds and axillary buds were investigated. The results showed that the process of flower bud differentiation and flowering of apical and axillary buds was consistent, accompanied by a large amount of carbohydrate consumption. This process was positively correlated with the expression trends of VcTPS1/2, VcSnRK1, VcFT, VcLFY2, VcSPL43, VcAP1, and VcDAM in general, and negatively correlated with that of VcTPP. In addition, there is a certain difference in the differentiation progress of flower buds between the apical and axillary buds. Compared with axillary buds, apical buds had higher contents of sucrose, fructose, glucose, Tre6P, and higher expression levels of VcTPS2, VcFT, VcSPL43, and VcAP1. Moreover, VcTPS1 and VcTPS2 were more closely related to the physiological substances (sucrose and Tre6P) in axillary bud and apical bud differentiation, respectively. It was suggested that sucrose and trehalose-6-phosphate play a crucial role in promoting flower bud differentiation in strong upright spring shoots, and VcTPS1 and VcTPS2 might play a central role in these activities. Our study provided substantial sight for further study on the mechanism of multiple flowering of blueberries and laid a foundation for the regulation and utilization of the phenomenon of multiple flowering in a growing season of perennial woody plants.
Collapse
Affiliation(s)
- Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Ping Wang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bao-Shi Guo
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Romero JM, Serrano-Bueno G, Camacho-Fernández C, Vicente MH, Ruiz MT, Pérez-Castiñeira JR, Pérez-Hormaeche J, Nogueira FTS, Valverde F. CONSTANS, a HUB for all seasons: How photoperiod pervades plant physiology regulatory circuits. THE PLANT CELL 2024; 36:2086-2102. [PMID: 38513610 PMCID: PMC11132886 DOI: 10.1093/plcell/koae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.
Collapse
Affiliation(s)
- Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Carolina Camacho-Fernández
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
- Universidad Politécnica de Valencia, Vicerrectorado de Investigación, 46022 Valencia, Spain
| | - Mateus Henrique Vicente
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - M Teresa Ruiz
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - J Román Pérez-Castiñeira
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Pérez-Hormaeche
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
4
|
Liu J, Bennett D, Demuth M, Burchard E, Artlip T, Dardick C, Liu Z. euAP2a, a key gene that regulates flowering time in peach ( Prunus persica) by modulating thermo-responsive transcription programming. HORTICULTURE RESEARCH 2024; 11:uhae076. [PMID: 38752224 PMCID: PMC11091482 DOI: 10.1093/hr/uhae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Frequent spring frost damage threatens temperate fruit production, and breeding of late-flowering cultivars is an effective strategy for preventing such damage. However, this effort is often hampered by the lack of specific genes and markers and a lack of understanding of the mechanisms. We examined a Late-Flowering Peach (LFP) germplasm and found that its floral buds require a longer chilling period to release from their dormancy and a longer warming period to bloom than the control cultivar, two key characteristics associated with flowering time. We discovered that a 983-bp deletion in euAP2a, an APETALA2 (AP2)-related gene with known roles in regulating floral organ identity and flowering time, was primarily responsible for late flowering in LFP. This deletion disrupts an miR172 binding site, resulting in a gain-of-function mutation in euAP2a. Transcriptomic analyses revealed that at different stages of floral development, two chilling-responsive modules and four warm-responsive modules, comprising approximately 600 genes, were sequentially activated, forming a unique transcription programming. Furthermore, we found that euAP2a was transiently downregulated during the activation of these thermal-responsive modules at various stages. However, the loss of such transient, stage-specific downregulation of euAP2a caused by the deletion of miR172 binding sites resulted in the deactivation or delay of these modules in the LFP flower buds, suggesting that euAP2a acts as a transcription repressor to control floral developmental pace in peaches by modulating the thermo-responsive transcription programming. The findings shed light on the mechanisms behind late flowering in deciduous fruit trees, which is instrumental for breeding frost-tolerant cultivars.
Collapse
Affiliation(s)
- Jianyang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Dennis Bennett
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Mark Demuth
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Erik Burchard
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Tim Artlip
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| |
Collapse
|
5
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo CA, Ochwo-Ssemakula M, Ozimati A, Esuma W, Kanaabi M, Wembabazi E, Baguma Y, Kawuki RS. Identification of Genomic Regions for Traits Associated with Flowering in Cassava ( Manihot esculenta Crantz). PLANTS (BASEL, SWITZERLAND) 2024; 13:796. [PMID: 38592820 PMCID: PMC10974989 DOI: 10.3390/plants13060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/11/2024]
Abstract
Flowering in cassava (Manihot esculenta Crantz) is crucial for the generation of botanical seed for breeding. However, genotypes preferred by most farmers are erect and poor at flowering or never flower. To elucidate the genetic basis of flowering, 293 diverse cassava accessions were evaluated for flowering-associated traits at two locations and seasons in Uganda. Genotyping using the Diversity Array Technology Pty Ltd. (DArTseq) platform identified 24,040 single-nucleotide polymorphisms (SNPs) distributed on the 18 cassava chromosomes. Population structure analysis using principal components (PCs) and kinships showed three clusters; the first five PCs accounted for 49.2% of the observed genetic variation. Linkage disequilibrium (LD) estimation averaged 0.32 at a distance of ~2850 kb (kilo base pairs). Polymorphism information content (PIC) and minor allele frequency (MAF) were 0.25 and 0.23, respectively. A genome-wide association study (GWAS) analysis uncovered 53 significant marker-trait associations (MTAs) with flowering-associated traits involving 27 loci. Two loci, SNPs S5_29309724 and S15_11747301, were associated with all the traits. Using five of the 27 SNPs with a Phenotype_Variance_Explained (PVE) ≥ 5%, 44 candidate genes were identified in the peak SNP sites located within 50 kb upstream or downstream, with most associated with branching traits. Eight of the genes, orthologous to Arabidopsis and other plant species, had known functional annotations related to flowering, e.g., eukaryotic translation initiation factor and myb family transcription factor. This study identified genomic regions associated with flowering-associated traits in cassava, and the identified SNPs can be useful in marker-assisted selection to overcome hybridization challenges, like unsynchronized flowering, and candidate gene validation.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Christopher Abu Omongo
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Alfred Ozimati
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- School of Biological Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Michael Kanaabi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Yona Baguma
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| |
Collapse
|
6
|
Zhu J, Li Y, Zhang Y, Xia L, Hu W, Huang X, Li K, He X, Luo C. Overexpression of MiSPL3a and MiSPL3b confers early flowering and stress tolerance in Arabidopsis thaliana. Int J Biol Macromol 2024; 262:129913. [PMID: 38336312 DOI: 10.1016/j.ijbiomac.2024.129913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) family genes play an important role in regulating plant flowering and resistance to stress. However, understanding the function of the SPL family in mango is still limited. In a previous study, two MiSPL3 genes, MiSPL3a and MiSPL3b (MiSPL3a/b), were identified in 'SiJiMi' mango and exhibited the highest expression in flowers at the initial flowering stage [24]. Therefore, in this study, we further investigated the expression pattern and gene function of MiSPL3a/b. The results showed that the expression of MiSPL3a was greatest at the end of floral bud differentiation, and MiSPL3b was expressed mainly during the flowering induction and vegetative growth stages. Subcellular localization showed that MiSPL3a/b localized to the nucleus. In addition, ectopic expression of MiSPL3a/b promoted earlier flowering in Arabidopsis thaliana by 3 d-6 d than in wild-type (WT) plants, which increased the expression of SUPPRESSOR OF CONSTANS1 (AtSOC1), FRUITFULL (AtFUL), and APETALA1 (AtAP1). MiSPL3a/b transgenic lines exhibited increased tolerance to drought, GA3, and abscisic acid (ABA) treatments but were sensitive to Pro-Ca treatment. Furthermore, protein interaction analysis revealed that MiSPL3a/b could interact with several stress-related proteins, flowering-related proteins, and the bridge protein 14-3-3. Taken together, MiSPL3a and MiSPL3b acted as positive regulators of flowering time and stress tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yuze Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yili Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - LiMing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Wanli Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Kaijiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
7
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
8
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
9
|
Yang J, Ning C, Liu Z, Zheng C, Mao Y, Wu Q, Wang D, Liu M, Zhou S, Yang L, He L, Liu Y, He C, Chen J, Liu J. Genome-Wide Characterization of PEBP Gene Family and Functional Analysis of TERMINAL FLOWER 1 Homologs in Macadamia integrifolia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2692. [PMID: 37514306 PMCID: PMC10385423 DOI: 10.3390/plants12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to breed commercial varieties with superior traits. Recent studies have shown that members of the phosphatidylethanolamine binding protein (PEBP) family play pivotal roles in regulating plant architecture and flowering time in various plants. In this study, thirteen members of MiPEBP were identified in the genome of M. integrifolia, and they are highly similarity in both motif and gene structure. A phylogenetic analysis divided the MiPEBP genes into three subfamilies: MFT-like, FT-like and TFL1-like. We subsequently identified two TERMINAL FLOWER 1 homologues from the TFL1-like subfamily, MiTFL1 and MiTFL1-like, both of which were highly expressed in stems and vegetative shoots, while MiTFL1-like was highly expressed in young leaves and early flowers. A subcellular location analysis revealed that both MiTFL1 and MiTFL1-like are localized in the cytoplasm and nucleus. The ectopic expression of MiTFL1 can rescue the early-flowering and terminal-flower phenotypes in the tfl1-14 mutant of Arabidopsis thaliana, and it indicates the conserved functions in controlling the inflorescence architecture and flowering time. This study will provide insight into the isolation of PEBP family members and the key targets for breeding M. integrifolia with improved traits in plant architecture and flowering time.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Conghui Ning
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Ziyan Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Cheng Zheng
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingli Liu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Chengzhong He
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| |
Collapse
|