1
|
Bhattacharyya D, LeVatte MA, Singh U, Issac F, Karim M, Ali S, Sieben A, Huang S, Wishart DS. A novel colorimetric assay for the detection of urinary N 1, N 12-diacetylspermine, a known biomarker for colorectal cancer. Anal Biochem 2025; 697:115717. [PMID: 39536927 DOI: 10.1016/j.ab.2024.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Urinary N1, N12-diacetylspermine (DAS) is a known biomarker for colorectal cancer (CRC). However, DAS levels in both healthy and CRC patients' urine samples are extremely low and often challenging to quantify. Complex and expensive methods do exist to detect DAS in urine, but simpler, less expensive methods to detect DAS are needed, especially in low resource settings. Here we describe a highly efficient, fast, precise, and inexpensive colorimetric assay to detect low levels of DAS in human urine samples. We used recombinant diacetylspermine oxidase (rDAS Ox), expressed and extracted from E. coli, to oxidize DAS, producing three products including hydrogen peroxide (H2O2). The level of DAS present, which correlates with H2O2 levels, was measured using horseradish peroxidase (HRP), which together with H2O2, oxidized Amplex™ Red to produce the pink-colored resorufin. The concentration of resorufin is directly proportional to H2O2 (and DAS) levels. As urine contains metabolites which interfere with these oxidation reactions, we developed a simple two column-based protocol using ion exchange resins to remove these compounds and concentrate the DAS. With this novel cleaning and concentrating method, DAS was concentrated 15 times (confirmed by nuclear magnetic resonance (NMR) spectroscopy) and <1 μM DAS could be detected. Correlation graphs of urine samples spiked with known DAS concentrations versus assay-determined DAS concentrations had high coefficients of determination (R2) for 0-10 μM DAS (0.94) and for 0-1 μM DAS (0.91), clearly demonstrating the excellent performance of the two-column protocol with the rDAS Ox reaction mixture. To the best of our knowledge, this is first reported colorimetric enzymatic assay that quantitates DAS in urine.
Collapse
Affiliation(s)
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Upasana Singh
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Fleur Issac
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mahmoud Karim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Fisher Scientific, 10720 178 St Edmonton, AB, T5S 1J3, Canada
| | - Saira Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - August Sieben
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Suyenna Huang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Computer Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
2
|
Deng W, Ye C, Wang W, Huang R, Guo C, Pan Y, Sun C. LC-MS analysis of chiral amino acids in human urine reveals D-amino acids as potential biomarkers for colorectal cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124270. [PMID: 39121519 DOI: 10.1016/j.jchromb.2024.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract. Changes in amino acid metabolites have been implicated in tumorigenesis and disease progression. Biomarkers on the basis of chiral amino acids, especially D-amino acids, have not been established for early diagnosis of CRC. Quantification of chiral amino acids, especially very low concentrations of endogenous D-amino acids, is technically challenging. We report here the quantification of L- and D-amino acids in urine samples collected from 115 CRC patients and 155 healthy volunteers, using an improved method. The method of chiral labeling, liquid chromatography, and tandem mass spectrometry enabled separation and detection of 28 amino acids (14 L-amino acids, 13 D-amino acids and Gly). Orthogonal partial least squares discriminant analysis identified 14 targeted variables among these chiral amino acids that distinguished the CRC from the healthy controls. Binary logistic regression analysis revealed that D-α-aminobutyric acid (D-AABA), L-alanine (L-Ala), D-alanine (D-Ala), D-glutamine (D-Gln) and D-serine (D-Ser) could be potential biomarkers for CRC. A receiver operating characteristic curve analysis of combined multi-variables contributed to an area under the curve (AUC) of 0.995 with 98.3 % sensitivity and 96.8 % specificity. A model constructed with D-AABA, D-Ala, D-Gln, and D-Ser achieved an AUC of 0.988, indicating important contributions of D-amino acids to the association with CRC. Further analysis also demonstrated that the metabolic aberration was associated with age and the development of CRC, D-methionine (D-Met) was decreased in CRC patients with age over 50, and D/L-Gln in patients at stage IV was higher than patients at stage I. This study provides the signature of D-amino acids in urine samples and offers a promising strategy for developing non-invasive diagnosis of CRC.
Collapse
Affiliation(s)
- Wenchan Deng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chundan Ye
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wei Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zijingang Campus of Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rongrong Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Cuirong Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Wang X, Guan X, Tong Y, Liang Y, Huang Z, Wen M, Luo J, Chen H, Yang S, She Z, Wei Z, Zhou Y, Qi Y, Zhu P, Nong Y, Zhang Q. UHPLC-HRMS-based Multiomics to Explore the Potential Mechanisms and Biomarkers for Colorectal Cancer. BMC Cancer 2024; 24:644. [PMID: 38802800 PMCID: PMC11129395 DOI: 10.1186/s12885-024-12321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Understanding the metabolic changes in colorectal cancer (CRC) and exploring potential diagnostic biomarkers is crucial for elucidating its pathogenesis and reducing mortality. Cancer cells are typically derived from cancer tissues and can be easily obtained and cultured. Systematic studies on CRC cells at different stages are still lacking. Additionally, there is a need to validate our previous findings from human serum. METHODS Ultrahigh-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics and lipidomics were employed to comprehensively measure metabolites and lipids in CRC cells at four different stages and serum samples from normal control (NR) and CRC subjects. Univariate and multivariate statistical analyses were applied to select the differential metabolites and lipids between groups. Biomarkers with good diagnostic efficacy for CRC that existed in both cells and serum were screened by the receiver operating characteristic curve (ROC) analysis. Furthermore, potential biomarkers were validated using metabolite standards. RESULTS Metabolite and lipid profiles differed significantly among CRC cells at stages A, B, C, and D. Dysregulation of glycerophospholipid (GPL), fatty acid (FA), and amino acid (AA) metabolism played a crucial role in the CRC progression, particularly GPL metabolism dominated by phosphatidylcholine (PC). A total of 46 differential metabolites and 29 differential lipids common to the four stages of CRC cells were discovered. Eight metabolites showed the same trends in CRC cells and serum from CRC patients compared to the control groups. Among them, palmitoylcarnitine and sphingosine could serve as potential biomarkers with the values of area under the curve (AUC) more than 0.80 in the serum and cells. Their panel exhibited excellent performance in discriminating CRC cells at different stages from normal cells (AUC = 1.00). CONCLUSIONS To our knowledge, this is the first research to attempt to validate the results of metabolism studies of serum from CRC patients using cell models. The metabolic disorders of PC, FA, and AA were closely related to the tumorigenesis of CRC, with PC being the more critical factor. The panel composed of palmitoylcarnitine and sphingosine may act as a potential biomarker for the diagnosis of CRC, aiding in its prevention.
Collapse
Affiliation(s)
- Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xuan Guan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ying Tong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yunxiao Liang
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Zongsheng Huang
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Mingsen Wen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Jichu Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Hongwei Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Shanyi Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Zhijuan Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yun Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yali Qi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yanying Nong
- Department of Academic Affairs, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China.
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
4
|
Cicalini I, Chiarelli AM, Chiacchiaretta P, Perpetuini D, Rosa C, Mastrodicasa D, d'Annibale M, Trebeschi S, Serafini FL, Cocco G, Narciso M, Corvino A, Cinalli S, Genovesi D, Lanuti P, Valentinuzzi S, Pieragostino D, Brocco D, Beets-Tan RGH, Tinari N, Sensi SL, Stuppia L, Del Boccio P, Caulo M, Delli Pizzi A. Multi-omics staging of locally advanced rectal cancer predicts treatment response: a pilot study. LA RADIOLOGIA MEDICA 2024; 129:712-726. [PMID: 38538828 PMCID: PMC11088547 DOI: 10.1007/s11547-024-01811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
Treatment response assessment of rectal cancer patients is a critical component of personalized cancer care and it allows to identify suitable candidates for organ-preserving strategies. This pilot study employed a novel multi-omics approach combining MRI-based radiomic features and untargeted metabolomics to infer treatment response at staging. The metabolic signature highlighted how tumor cell viability is predictively down-regulated, while the response to oxidative stress was up-regulated in responder patients, showing significantly reduced oxoproline values at baseline compared to non-responder patients (p-value < 10-4). Tumors with a high degree of texture homogeneity, as assessed by radiomics, were more likely to achieve a major pathological response (p-value < 10-3). A machine learning classifier was implemented to summarize the multi-omics information and discriminate responders and non-responders. Combining all available radiomic and metabolomic features, the classifier delivered an AUC of 0.864 (± 0.083, p-value < 10-3) with a best-point sensitivity of 90.9% and a specificity of 81.8%. Our results suggest that a multi-omics approach, integrating radiomics and metabolomic data, can enhance the predictive value of standard MRI and could help to avoid unnecessary surgical treatments and their associated long-term complications.
Collapse
Affiliation(s)
- Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, "G. d'Annunzio" University, Chieti, Italy
| | - Antonio Maria Chiarelli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Odontoiatry, "G. d'Annunzio" University, Chieti, Italy.
| | - David Perpetuini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Consuelo Rosa
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | | | - Martina d'Annibale
- Department of Radiology, SS. Annunziata Hospital, "G. d'Annunzio" University, Via dei Vestini, 66100, ChietiChieti, Italy
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Giulio Cocco
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
- Unit of Ultrasound in Internal Medicine, Department of Medicine and Science of Aging, "G. D'Annunzio" University, Chieti, Italy
| | - Marco Narciso
- Department of Radiology, SS. Annunziata Hospital, "G. d'Annunzio" University, Via dei Vestini, 66100, ChietiChieti, Italy
| | - Antonio Corvino
- Medical, Movement and Wellbeing Sciences Department, Via Medina 40, 80133, Naples, Italy
| | - Sebastiano Cinalli
- Division of Pathology, ASST of Valtellina and Alto Lario, Sondrio, Italy
| | - Domenico Genovesi
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, "G. D'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, "G. D'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, "G. d'Annunzio" University, Chieti, Italy
| | - Davide Brocco
- Clinical Oncology Unit, SS. Annunziata Hospital, Via dei Vestini, 66100, Chieti, Italy
| | - Regina G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Nicola Tinari
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territory Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, "G. D'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
- Department of Radiology, SS. Annunziata Hospital, "G. d'Annunzio" University, Via dei Vestini, 66100, ChietiChieti, Italy
| | - Andrea Delli Pizzi
- Department of Innovative Technologies in Medicine and Odontoiatry, "G. d'Annunzio" University, Chieti, Italy
- Department of Radiology, SS. Annunziata Hospital, "G. d'Annunzio" University, Via dei Vestini, 66100, ChietiChieti, Italy
| |
Collapse
|
5
|
Zhang X, Tong X, Chen Y, Chen J, Li Y, Ding C, Ju S, Zhang Y, Zhang H, Zhao J. A metabolomics study on carcinogenesis of ground-glass nodules. Cytojournal 2024; 21:12. [PMID: 38628288 PMCID: PMC11021118 DOI: 10.25259/cytojournal_68_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/03/2023] [Indexed: 04/19/2024] Open
Abstract
Objective This study aimed to identify differential metabolites and key metabolic pathways between lung adenocarcinoma (LUAD) tissues and normal lung (NL) tissues using metabolomics techniques, to discover potential biomarkers for the early diagnosis of lung cancer. Material and Methods Forty-five patients with primary ground-glass nodules (GGN) identified on computed tomography imaging and who were willing to undergo surgery at Shanghai General Hospital from December 2021 to December 2022 were recruited to the study. All participants underwent video thoracoscopy surgery with segmental or wedge resection of the lung. Tissue samples for pathological examination were collected from the site of ground-glass nodules (GGN) lesion and 3 cm away from the lesion (NL). The pathology results were 35 lung adenocarcinoma (LUAD) cases (13 invasive adenocarcinoma, 14 minimally invasive adenocarcinoma, and eight adenocarcinoma in situ), 10 benign samples, and 45 NL tissues. For the untargeted metabolomics technique, 25 LUAD samples were assigned as the case group and 30 NL tissues as the control group. For the targeted metabolomics technique, ten LUAD samples were assigned as the case group and 15 NL tissues as the control group. Samples were analyzed by untargeted and targeted metabolomics, with liquid chromatography-tandem mass spectrometry detection used as part of the experimental procedure. Results Untargeted metabolomics revealed 164 differential metabolites between the case and control groups, comprising 110 up regulations and 54 down regulations. The main metabolic differences found by the untargeted method were organic acids and their derivatives. Targeted metabolomics revealed 77 differential metabolites between the case and control groups, comprising 69 up regulations and eight down regulations. The main metabolic changes found by the targeted method were fatty acids, amino acids, and organic acids. The levels of organic acids such as lactic acid, fumaric acid, and malic acid were significantly increased in LUAD tissue compared to NL. Specifically, an increased level of L-lactic acid was found by both untargeted (variable importance in projection [VIP] = 1.332, fold-change [FC] = 1.678, q = 0.000) and targeted metabolomics (VIP = 1.240, FC = 1.451, q = 0.043). Targeted metabolomics also revealed increased levels of fumaric acid (VIP = 1.481, FC = 1.764, q = 0.106) and L-malic acid (VIP = 1.376, FC = 1.562, q = 0.012). Most of the 20 differential fatty acids identified were downregulated, including dodecanoic acid (VIP = 1.416, FC = 0.378, q = 0.043) and tridecane acid (VIP = 0.880, FC = 0.780, q = 0.106). Furthermore, increased levels of differential amino acids were found in LUAD samples. Conclusion Lung cancer is a complex and heterogeneous disease with diverse genetic alterations. The study of metabolic profiles is a promising research field in this cancer type. Targeted and untargeted metabolomics revealed significant differences in metabolites between LUAD and NL tissues, including elevated levels of organic acids, decreased levels of fatty acids, and increased levels of amino acids. These metabolic features provide valuable insights into LUAD pathogenesis and can potentially serve as biomarkers for prognosis and therapy response.
Collapse
Affiliation(s)
- Xiaomiao Zhang
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Tong
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Chen
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Li
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Ju
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hang Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Zhao
- Department of Thoracic Surgery, Institute of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
He T, Li X, Wang Z, Mao J, Mao Y, Sha R. Studies on the Changes of Fermentation Metabolites and the Protective Effect of Fermented Edible Grass on Stress Injury Induced by Acetaminophen in HepG2 Cells. Foods 2024; 13:470. [PMID: 38338605 PMCID: PMC10855311 DOI: 10.3390/foods13030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, gas chromatography-mass spectrometry (GC-MS) based untargeted metabolomics was used to describe the changes of metabolites in edible grass with Lactobacillus plantarum (Lp) fermentation durations of 0 and 7 days, and subsequently to investigate the protective effect of fermented edible grass on acetaminophen-induced stress injury in HepG2 cells. Results showed that 53 differential metabolites were identified, including 31 significantly increased and 22 significantly decreased metabolites in fermented edible grass. Fermented edible grass protected HepG2 cells against acetaminophen-induced stress injury, which profited from the reduction in lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels and the enhancement in superoxide dismutase (SOD) activity. Cell metabolomics analysis revealed that a total of 13 intracellular and 20 extracellular differential metabolites were detected. Fermented edible grass could regulate multiple cell metabolic pathways to exhibit protective effects on HepG2 cells. These findings provided theoretical guidance for the formation and regulation of bioactive metabolites in fermented edible grass and preliminarily confirmed the protective effects of fermented edible grass on drug-induced liver damage.
Collapse
Affiliation(s)
- Tao He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China
| | - Xianxiu Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China
| | - Yangchen Mao
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China
| |
Collapse
|
7
|
Kuhn LT, Weber S, Bargon J, Parella T, Pérez-Trujillo M. Hyperpolarization-Enhanced NMR Spectroscopy of Unaltered Biofluids Using Photo-CIDNP. Anal Chem 2024; 96:102-109. [PMID: 38109875 PMCID: PMC10782414 DOI: 10.1021/acs.analchem.3c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
The direct and unambiguous detection and identification of individual metabolite molecules present in complex biological mixtures constitute a major challenge in (bio)analytical research. In this context, nuclear magnetic resonance (NMR) spectroscopy has proven to be particularly powerful owing to its ability to provide both qualitative and quantitative atomic-level information on multiple analytes simultaneously in a noninvasive manner. Nevertheless, NMR suffers from a low inherent sensitivity and, moreover, lacks selectivity regarding the number of individual analytes to be studied in a mixture of a myriad of structurally and chemically very different molecules, e.g., metabolites in a biofluid. Here, we describe a method that circumvents these shortcomings via performing selective, photochemically induced dynamic nuclear polarization (photo-CIDNP) enhanced NMR spectroscopy on unmodified complex biological mixtures, i.e., human urine and serum, which yields a single, background-free one-dimensional NMR spectrum. In doing this, we demonstrate that photo-CIDNP experiments on unmodified complex mixtures of biological origin are feasible, can be performed straightforwardly in the native aqueous medium at physiological metabolite concentrations, and act as a spectral filter, facilitating the analysis of NMR spectra of complex biofluids. Due to its noninvasive nature, the method is fully compatible with state-of-the-art metabolomic protocols providing direct spectroscopic information on a small, carefully selected subset of clinically relevant metabolites. We anticipate that this approach, which, in addition, can be combined with existing high-throughput/high-sensitivity NMR methodology, holds great promise for further in-depth studies and development for use in metabolomics and many other areas of analytical research.
Collapse
Affiliation(s)
- Lars T. Kuhn
- Institut
für Physikalische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | - Stefan Weber
- Institut
für Physikalische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | - Joachim Bargon
- Institut
für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Teodor Parella
- Servei
de Ressonància Magnètica Nuclear, Facultat de Ciències
i Biosciències, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Míriam Pérez-Trujillo
- Servei
de Ressonància Magnètica Nuclear, Facultat de Ciències
i Biosciències, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
8
|
Santorelli L, Caterino M, Costanzo M. Proteomics and Metabolomics in Biomedicine. Int J Mol Sci 2023; 24:16913. [PMID: 38069240 PMCID: PMC10706996 DOI: 10.3390/ijms242316913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The technological advances of recent years have significantly enhanced medical discoveries [...].
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, 20122 Milan, Italy;
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| |
Collapse
|
9
|
Zhang X, Zang X, Yang H, Jiao P, Zhang J, Song N, Lv Z. Ultrahigh-performance liquid chromatography-high-resolution mass spectrometry-based plasma metabolomics study of thymoma and thymic hyperplasia. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9529. [PMID: 37125446 DOI: 10.1002/rcm.9529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Thymoma is a rare malignant tumor but it is the most common primary tumor of the anterior mediastinum. The current imaging methods for thymoma screening suffer from false positive rate problems, and thymoma pathogenesis remains elusive. Study of thymoma metabolic characteristics could provide clues for improving the diagnosis and understanding the pathogenesis of thymoma. METHODS Metabolic profiling of plasma from thymoma and thymic hyperplasia patients was performed using ultrahigh-performance liquid chromatography combined with high-resolution mass spectrometry in both positive and negative ionization modes. After pre- and post-processing, the dataset was divided into three age groups and statistical analysis was performed to select differential metabolites of thymoma. For feature identification, experimental tandem mass spectra were matched to those of databases and available chemical standards, and also manually annotated with plausible chemical structures to ensure high identification confidence. RESULTS A total of 47 differential metabolites were identified in thymoma. Significantly higher levels of histidine, sphinganine 1-phosphate, lactic acid dimer, phenylacetylglutamine, LPC (18:3) and LPC (16:1), and significantly lower levels of phenylalanine, indole-3-propionic acid (IPA), hippuric acid and mesobilirubinogen were associated with thymoma. Tryptophan level in thymoma-associated myasthenia gravis (TAMG) was significantly lower than that of the MG(-) group. IPA and hippuric acid abundances exhibited increasing trends from indolent to aggressive thymoma. CONCLUSIONS Our study revealed aberrant aromatic amino acid metabolism and fatty acid oxidation might be associated with thymoma. The identified unique metabolic characteristics of thymoma may provide valuable information for study of the molecular mechanism of thymoma pathogenesis, and improvement of diagnosis and discovery of new therapeutic strategies for thymoma.
Collapse
Affiliation(s)
- Xin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huanhuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ni Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Luo X, Zhou Y, Yuan S, Chen X, Zhang B. The changes in metabolomics profile induced by intermittent theta burst stimulation in major depressive disorder: an exploratory study. BMC Psychiatry 2023; 23:550. [PMID: 37516823 PMCID: PMC10387200 DOI: 10.1186/s12888-023-05044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Recently, there has been an ongoing interest in the mechanism of intermittent theta burst stimulation (iTBS) in major depressive disorder. Studying the metabolite changes induced by iTBS may help to understand the mechanism. METHODS Eleven participants with major depressive disorder received 10 days iTBS treatment. Magnetic resonance imaging (MRI) was used to target the region of the left dorsolateral prefrontal cortex (DLPFC) in each participant. We analyzed the effects of iTBS on metabolites using high-throughput profiling and assessed its impact on depressive symptoms. These analyses were considered exploratory, and no correction for multiple comparisons was applied. RESULTS Among the 318 measured metabolites, a significant increase in cystine, asymmetric dimethylarginine (ADMA), 1-methylhistidine, indoleacetic acid (IAA), diethanolamine (DEA), dopa, riboflavin-5'-monophosphate (FMN), and a significant decrease in alphalinolenic acid (ALA), gamma-linolenic acid (GLA), serotonin, linoleic acid (LA) (p < 0.05) were detected in the patients after iTBS treatment. In Pearson correlation analysis, the plasma levels of LA, FMN and ADMA at baseline were significantly related to the reduction rate of the 17-item Hamilton Depression Rating Scale and the Patient Health Questionnaire-9 scores (p < 0.05). CONCLUSIONS Our study highlights that LA, FMN, ADMA and their relationship with oxidative stress, may be key factors in the antidepressant efficacy of iTBS.
Collapse
Affiliation(s)
- Xin Luo
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwen Zhou
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Shiqi Yuan
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Chen
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
11
|
Yang R, Wang Y, Yuan C, Shen X, Cai M, Wang L, Hu J, Song H, Wang H, Zhang L. The combined analysis of urine and blood metabolomics profiles provides an accurate prediction of the training and competitive status of Chinese professional swimmers. Front Physiol 2023; 14:1197224. [PMID: 37398904 PMCID: PMC10307620 DOI: 10.3389/fphys.2023.1197224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Objective: The purpose of this study was to employ metabolomics for the analysis of urine metabolites in swimmers, with the aim of establishing models for assessing their athletic status and competitive potential. Furthermore, the study sought to compare the identification efficacy of multi-component (urine and blood) model versus single-component (urine or blood) models, in order to determine the optimal approach for evaluating training and competitive status. Methods: A total of 187 Chinese professional swimmers, comprising 103 elite and 84 sub-elite level athletes, were selected as subjects for this study. Urine samples were obtained from each participant and subjected to nuclear magnetic resonance (NMR) metabolomics analysis. Significant urine metabolites were screened through multivariable logistic regression analysis, and an identification model was established. Based on the previously established model of blood metabolites, this study compared the discriminative and predictive performance of three models: either urine or blood metabolites model and urine + blood metabolites model. Results: Among 39 urine metabolites, 10 were found to be significantly associated with the athletic status of swimmers (p < 0.05). Of these, levels of 2-KC, cis-aconitate, formate, and LAC were higher in elite swimmers compared to sub-elite athletes, while levels of 3-HIV, creatinine, 3-HIB, hippurate, pseudouridine, and trigonelline were lower in elite swimmers. Notably, 2-KC and 3-HIB exhibited the most substantial differences. An identification model was developed to estimate physical performance and athletic level of swimmers while adjusting for different covariates and including 2-KC and 3-HIB. The urine metabolites model showed an area under the curve (AUC) of 0.852 (95% CI: 0.793-0.912) for discrimination. Among the three identification models tested, the combination of urine and blood metabolites showed the highest performance than either urine or blood metabolites, with an AUC of 0.925 (95% CI: 0.888-0.963). Conclusion: The two urine metabolites, 2-KC and 3-HIV, can serve as significant urine metabolic markers to establish a discrimination model for identifying the athletic status and competitive potential of Chinese elite swimmers. Combining two screened urine metabolites with four metabolites reported exhibiting significant differences in blood resulted in improved predictive performance compared to using urine metabolites alone. These findings indicate that combining blood and urine metabolites has a greater potential for identifying and predicting the athletic status and competitive potential of Chinese professional swimmers.
Collapse
Affiliation(s)
- Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chunhua Yuan
- Surgery Ward, Shanghai Health Rehabilitation Hospital, Shanghai, China
| | - Xunzhang Shen
- Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Center), Shanghai, China
| | - Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Hongbiao Wang
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lei Zhang
- Department of Pediatrics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
12
|
Alonso-Moreno P, Rodriguez I, Izquierdo-Garcia JL. Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites 2023; 13:614. [PMID: 37233655 PMCID: PMC10223723 DOI: 10.3390/metabo13050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics is a valuable tool for identifying biomarkers and understanding the underlying metabolic changes associated with various diseases. However, the translation of metabolomics analysis to clinical practice has been limited by the high cost and large size of traditional high-resolution NMR spectrometers. Benchtop NMR, a compact and low-cost alternative, offers the potential to overcome these limitations and facilitate the wider use of NMR-based metabolomics in clinical settings. This review summarizes the current state of benchtop NMR for clinical applications where benchtop NMR has demonstrated the ability to reproducibly detect changes in metabolite levels associated with diseases such as type 2 diabetes and tuberculosis. Benchtop NMR has been used to identify metabolic biomarkers in a range of biofluids, including urine, blood plasma and saliva. However, further research is needed to optimize the use of benchtop NMR for clinical applications and to identify additional biomarkers that can be used to monitor and manage a range of diseases. Overall, benchtop NMR has the potential to revolutionize the way metabolomics is used in clinical practice, providing a more accessible and cost-effective way to study metabolism and identify biomarkers for disease diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Pilar Alonso-Moreno
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
| | - Ignacio Rodriguez
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Luis Izquierdo-Garcia
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Suri GS, Kaur G, Carbone GM, Shinde D. Metabolomics in oncology. Cancer Rep (Hoboken) 2023; 6:e1795. [PMID: 36811317 PMCID: PMC10026298 DOI: 10.1002/cnr2.1795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Oncogenic transformation alters intracellular metabolism and contributes to the growth of malignant cells. Metabolomics, or the study of small molecules, can reveal insight about cancer progression that other biomarker studies cannot. Number of metabolites involved in this process have been in spotlight for cancer detection, monitoring, and therapy. RECENT FINDINGS In this review, the "Metabolomics" is defined in terms of current technology having both clinical and translational applications. Researchers have shown metabolomics can be used to discern metabolic indicators non-invasively using different analytical methods like positron emission tomography, magnetic resonance spectroscopic imaging etc. Metabolomic profiling is a powerful and technically feasible way to track changes in tumor metabolism and gauge treatment response across time. Recent studies have shown metabolomics can also predict individual metabolic changes in response to cancer treatment, measure medication efficacy, and monitor drug resistance. Its significance in cancer development and treatment is summarized in this review. CONCLUSION Although in infancy, metabolomics can be used to identify treatment options and/or predict responsiveness to cancer treatments. Technical challenges like database management, cost and methodical knowhow still persist. Overcoming these challenges in near further can help in designing new treatment régimes with increased sensitivity and specificity.
Collapse
Affiliation(s)
- Gurparsad Singh Suri
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Gurleen Kaur
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
14
|
Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023; 15:nu15051138. [PMID: 36904138 PMCID: PMC10005077 DOI: 10.3390/nu15051138] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Hippuric acid (HA) is a metabolite resulting from the hepatic glycine conjugation of benzoic acid (BA) or from the gut bacterial metabolism of phenylalanine. BA is generally produced by gut microbial metabolic pathways after the ingestion of foods of vegetal origin rich in polyphenolic compounds, namely, chlorogenic acids or epicatechins. It can also be present in foods, either naturally or artificially added as a preservative. The plasma and urine HA levels have been used in nutritional research for estimating the habitual fruit and vegetable intake, especially in children and in patients with metabolic diseases. HA has also been proposed as a biomarker of aging, since its levels in the plasma and urine can be influenced by the presence of several age-related conditions, including frailty, sarcopenia and cognitive impairment. Subjects with physical frailty generally exhibit reduced plasma and urine levels of HA, despite the fact that HA excretion tends to increase with aging. Conversely, subjects with chronic kidney disease exhibit reduced HA clearance, with HA retention that may exert toxic effects on the circulation, brain and kidneys. With regard to older patients with frailty and multimorbidity, interpreting the HA levels in the plasma and urine may result particularly challenging because HA is at the crossroads between diet, gut microbiota, liver and kidney function. Although these considerations may not make HA the ideal biomarker of aging trajectories, the study of its metabolism and clearance in older subjects may provide valuable information for disentangling the complex interaction between diet, gut microbiota, frailty and multimorbidity.
Collapse
|