1
|
Xia P, Zhou S, Zhao X, Zhao C. Characterization and Expression Analysis of Sugar Transporters through Partial Least Square Structural Equation Model (PLS-SEM) Revealed Their Role in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1825. [PMID: 38999665 PMCID: PMC11243835 DOI: 10.3390/plants13131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Pepper (Capsicum annuum L.) is one of the most important economic crops in the world. By controlling the transport and distribution of photosynthetic products between cells and organs, sugar transporters are widely involved in growth and development, environmental adaptation, and microbial interactions. The present study was carried out at the genome-wide level to systematically characterize sugar transporters. As a result, 50 MST, 3 SUT, and 29 SWEET genes were identified and classified. The expression pattern of sugar transporters in pepper was analyzed by transcriptomic data. The expression properties of sugar transporters were further explored in pepper varieties with significant differences in weight, shape, and pungency. It was shown that the pepper sugar transporter genes had obvious spatiotemporal specific expression characteristics and exhibited variety-specific expression preferences. We focus on analyzing candidate genes that may be involved in fruit development and expansion. We further explore the response of pepper sugar transporters to adversity stress using a structural equation model. Finally, we found that the MST, SUT, and SWEET families are collectively involved in balancing pepper resistance to abiotic stress by coordinating the expression strengths of different family members. Our study may contribute to the functional study of pepper sugar transporter genes and create the prospect of utilizing sugar transporter gene resources to improve pepper variety.
Collapse
Affiliation(s)
- Pan Xia
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyong Zhou
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Li XX, Lai YS. The Development and Application of Vegetable Genomics Increase the Efficiency of Exploring New Gene Resources for Vegetables. Int J Mol Sci 2024; 25:6906. [PMID: 39000015 PMCID: PMC11241489 DOI: 10.3390/ijms25136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 07/14/2024] Open
Abstract
Vegetables, as indispensable non-staple foods in people's daily diet, provide a variety of essential vitamins, minerals, and other nutrients, as well as special phytochemicals, which are recognized as functional components for human nutritional balance or medicinal purposes [...].
Collapse
Affiliation(s)
- Xi-Xiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
3
|
Ochoa-Alejo N, Gómez-Jiménez MC, Martínez O. Editorial: Transcriptomics of fruit growth, development and ripening. FRONTIERS IN PLANT SCIENCE 2024; 15:1399376. [PMID: 38645390 PMCID: PMC11026863 DOI: 10.3389/fpls.2024.1399376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Neftali Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | | | - Octavio Martínez
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Muñoz-Vargas MA, Taboada J, González-Gordo S, Palma JM, Corpas FJ. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events. PLANT CELL REPORTS 2024; 43:92. [PMID: 38466441 PMCID: PMC10927865 DOI: 10.1007/s00299-024-03179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|