1
|
Huo C, Liu S, Chang BH, Cheng Z, Zhang Y, Liu W, Zhang J, Zhao X. Zinc finger protein rotund is essential for wings and ovarian development by regulating lipid homeostasis in Locusta migratoria. Int J Biol Macromol 2024; 286:138448. [PMID: 39645108 DOI: 10.1016/j.ijbiomac.2024.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cys2-His2-type zinc finger (C2H2-ZF) proteins are involved in diverse biological processes. In insects, the wing and ovarian development is crucial for reproduction and evolution, yet the physiological roles of C2H2-ZF proteins in these processes remain underexplored. Here, RNA-seq analyses identified C2H2-ZF protein genes that were differentially expressed during wing formation in Locusta migratoria. Among these, the gene encoding a C2H2-ZF protein Rotund (Rn) was highly expressed in the wing pads of fourth- and fifth-instar nymphs. RNA interference mediated knockdown of LmRn in nymph stages resulted in pronounced abnormalities with curled wings and reduced wing area. LmRn knockdown led to reduced expression of lipid transport-related genes during wing morphogenesis, significantly decreased triglyceride (TG) level. In addition, we also find that LmRn knockdown impaired ovarian development and oocyte maturation in female adults, with decreased expression levels of lipid synthesis-related genes, and vitellogenin genes (VgA, and VgB) in the fat body. Meanwhile, the number of lipid droplets, TG content, and protein levels in the ovaries were significantly decreased after LmRn was silenced. Together, our findings reveal that LmRn is essential for wing and ovarian development by regulating lipid homeostasis in locusts, offering a potential target for insect pest management.
Collapse
Affiliation(s)
- Caiyan Huo
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; College of Life Science, Shanxi University, Shanxi, China
| | - Sikai Liu
- College of Life Science, Shanxi University, Shanxi, China
| | - Babar Hussain Chang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; Department of Plant Protection, Sub-Campus Umerkot, Sindh Agriculture University Tandojam, 70060, Pakistan
| | - Zhuowang Cheng
- College of Life Science, Shanxi University, Shanxi, China
| | - Yanan Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; College of Life Science, Shanxi University, Shanxi, China
| | - Weimin Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Xiaoming Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China.
| |
Collapse
|
2
|
Ma T, Tang Y, Jin Y, Xu J, Zhao H, Zhou M, Tang B, Wang S. Fatty acid synthase 2 knockdown alters the energy allocation strategy between immunity and reproduction during infection by Micrococcus luteus in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106127. [PMID: 39477581 DOI: 10.1016/j.pestbp.2024.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Immunity and reproduction are vital functions for the survival and population maintenance of female insects. However, owing to limited resources, these two functions cannot be fulfilled simultaneously, resulting in an energy tradeoff between them. Notably, the mechanisms underlying this immune-reproductive trade-off, in which energy competition likely plays a central role, remain poorly understood. Fatty acid synthase (FAS), a key gene involved in lipid synthesis and insect energy metabolism, was investigated in this study using Locusta migratoria as the research subject. Bacterial infection and RNA interference (RNAi) technology were used to examine changes in the immunity, fecundity, and energy metabolism patterns of locusts under different treatments. The findings of this study demonstrate that infection with Micrococcus luteus triggers an immune response in locusts, significantly upregulates the expression of defensin 3 (DEF3) and Attacin, and enhances pHenoloxidase (PO) activity. Upon FAS2 silencing, bacterial attack upregulated DEF3 and Attacin expression to a lesser extent, leading to increased lysozyme activity instead of PO. Furthermore, bacterial infection results in a decrease in glycogen and glucose content in the fat body, accompanied by a significant increase in triacylglycerol (TAG) content. However, after FAS2 knockdown, both the lipid and carbohydrate contents were significantly reduced in the fat body. Compared with bacterial infection alone, low FAS2 expression further exacerbated fecundity impairment in locusts. The expression levels of vitellogenin A (VgA) and vitellogenin B (VgB) were significantly low, with severe ovarian atrophy observed. Notably, the ovarian weight was only 21 % compared to that of the control group. Moreover, females exhibited minimal egg-laying behavior. In summary, our findings suggest that following FAS2 gene silencing, there is a greater inclination toward immune stimulation energy activation in locusts, whereas reproductive investment is reduced. The outcomes of this study will contribute to the further exploration of the molecular mechanisms underlying the trade-off between immune and reproductive energy in locusts.
Collapse
Affiliation(s)
- Tingting Ma
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Ya Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yi Jin
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jiaying Xu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Huazhang Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Tang B, Han Y, Mao Q, Fu H, Luo Y, Hua L, Liu B, Hu G, Wang S, Desneux N, Duan H, Wu Y. Regulation of three novel pepper thiothiazolidinones on the fecundity of Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106033. [PMID: 39277359 DOI: 10.1016/j.pestbp.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Spodoptera frugiperda has emerged as a major invasive pest worldwide. The utilization of chemical pesticides not only poses numerous ecological concerns but also fosters resistance in S. frugiperda. In this study, we designed and synthesized three novel thiothiazolidinone compounds (6a, 7b, and 7e) and incorporated innovative thiothiazolidinone structural elements into the piperine skeleton. Treatment with compounds 6a and 7e resulted in the blackening and agglomeration of oviduct eggs within the ovaries of certain female moths, impeding the release of normal eggs. The levels of vitellogenin and vitellogenin receptor, along with three trehalase inhibitors, exhibited a dynamic equilibrium state, leading to no discernible change in egg production but a notable increase in the generation of low-hatching-rate egg fragments. Compared with the injection of 2%DMSO, the eclosion rate of 6a injection was significantly decreased, as followed the spawning time and longevity were prolonged or significantly prolonged in the trehalase inhibitors of 6a, 7b, and 7e. We aimed to investigate the regulatory impacts of three new pepper thiothiazolidinone compounds on the reproduction of S. frugiperda, and to authenticate the efficacy of novel alginase inhibitors in inhibiting the reproduction of S. frugiperda. This research endeavors to aid in the identification of efficient and steadfast trehalase inhibitors, thereby expediting the research and development of potent biological pesticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Haoyu Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China.
| |
Collapse
|
4
|
Nobre ICDS, Coelho RR, de Souza FMC, Reis MA, Torres JB, Antonino JD. Insights from different reproductive gene knockdowns via RNA interference in the lady beetle Eriopis connexa: Establishing a new model for molecular studies on natural enemies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22125. [PMID: 38973236 DOI: 10.1002/arch.22125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Insect pest control can be achieved by the application of RNA interference (RNAi), a key molecular tool in functional genomics. Whereas most RNAi research has focused on insect pests, few studies have been performed on natural enemies. Validating the efficacy of RNAi in natural enemies is crucial for assessing its safety and enabling molecular research on these organisms. Here, we assessed the efficacy of RNAi in the ladybird beetle Eriopis connexa Germar (Coleoptera: Coccinellidae), focusing on genes related to reproduction, such as vitellogenin (Vg) and its receptor (VgR). In the transcriptome of E. connexa, we found one VgR (EcVgR) and two Vg genes (EcVg1 and EcVg2). These genes have been validated by in silico analyses of functional domains and evolutionary relationships. Five-day-old females were injected with 500 ng/µL of a specific double-stranded RNA (dsRNA) (dsEcVg1, dsEcVg2, or dsEcVgR) for RNAi tests, while nonspecific dsRNA (dsGFP or dsAgCE8.1) was used as a control. Interestingly, dsEcVg2 was able to knockdown both Vg genes, while dsEcVg1 could silence only EcVg1. Additionally, the viability of the eggs was significantly reduced when both Vg genes were knocked down at the same time (after treatment with dsEcVg2 or "dsEcVg1+dsEcVg2"). Ultimately, malformed, nonviable eggs were produced when EcVgR was silenced. Interestingly, no dsRNA treatment had an impact on the quantity of eggs laid. Therefore, the feasibility of RNAi in E. connexa has been confirmed, suggesting that this coccinellid is an excellent Neotropical model for molecular research on natural enemies and for studying RNAi nontarget effects.
Collapse
Affiliation(s)
| | - Roberta Ramos Coelho
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | | | - Manoely Abreu Reis
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | - Jorge Braz Torres
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | - José Dijair Antonino
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| |
Collapse
|
5
|
Wang CX, Bao HQ, Yan ZC, Wang J, Wang S, Li YX. Knockdown of vitellogenin receptor based on minute insect RNA interference methods affects the initial mature egg load in the pest natural enemy Trichogramma dendrolimi. INSECT SCIENCE 2024. [PMID: 38783625 DOI: 10.1111/1744-7917.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Vitellogenin receptor (VgR) plays a crucial role in oogenesis by mediating endocytosis of vitellogenin and a portion of the yolk proteins in many insect species. However, the function of VgR in minute parasitoid wasps is largely unknown. Here, we applied Trichogramma dendrolimi, a minute egg parasitoid, as a study model to investigate the function of VgR in parasitoids. We developed RNA interference (RNAi) methods based on microinjection of prepupae in T. dendrolimi. RNAi employs nanomaterial branched amphipathic peptide capsules (BAPC) as a carrier for double-stranded RNA (dsRNA), significantly enhancing delivery efficiency. Also, artificial hosts without medium were used to culture the injected prepupae in vitro. Utilizing these methods, we found that ovarian growth was disrupted after knockdown of TdVgR, as manifested by the suppressed development of the ovariole and the inhibition of nurse cell internalization by oocytes. Also, the initial mature egg load in the ovary was significantly reduced. Notably, the parasitic capacity of the female adult with ovarian dysplasia was significantly decreased, possibly resulting from the low availability of mature eggs. Moreover, ovarian dysplasia in T. dendrolimi caused by VgR deficiency are conserved despite feeding on different hosts. The results confirmed a critical role of TdVgR in the reproductive ability of T. dendrolimi and provided a reference for gene functional studies in minute insects.
Collapse
Affiliation(s)
- Cheng-Xing Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hui-Qiao Bao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Chao Yan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuan-Xi Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Liu Q, Liu B, Sun T, Wang P, Sun W, Pan B. Vitellogenin and its upstream gene TOR play essential roles in the reproduction of Dermanyssus gallinae. Exp Parasitol 2024; 260:108746. [PMID: 38513972 DOI: 10.1016/j.exppara.2024.108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
In Dermanyssus gallinae, a hematophagous mite, the initiation of vitellogenesis induced by blood feeding is essential for its reproduction. However, the precise gene structures and physiological functions of Vg in D. gallinae and its upstream gene, Target of Rapamycin (TOR), have not been fully understood. This study revealed the presence of four homologous genes within D. gallinae, named Dg-Vg1, Dg-Vg1-like, Dg-Vg2, and Dg-Vg2-like, especially, Dg-Vg2-like was firstly identified in the mites. The expression levels of all these Vg genes were significantly higher in adult females than other stages. Following blood feeding, the expression levels of these genes increased significantly, followed by a subsequent decrease, aligning with egg production. Silencing Dg-Vgs by RNA interference (RNAi) led to decreased fecundity and egg hatching rates, as well as abnormal embryonic development, suggesting a vital role for Dg-Vgs in both egg formation and embryonic development. Furthermore, the knockdown of Dg-TOR significantly reduced the expression of Dg-Vgs and negatively impacted the reproductive capabilities of PRMs, indicating that TOR influences PRM reproduction by regulating the expression of Dg-Vgs. In summary, these findings demonstrated the crucial roles of Dg-Vgs and Dg-TOR in PRM reproduction, highlighting their potential as targets for pest control.
Collapse
Affiliation(s)
- Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Zhao ST, Ran XT, Huang YY, Sang W, Derrick BE, Qiu BL. Transcriptomic response of citrus psyllid salivary glands to the infection of citrus Huanglongbing pathogen. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-20. [PMID: 38444234 DOI: 10.1017/s0007485324000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.
Collapse
Affiliation(s)
- San-Tao Zhao
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Tong Ran
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Yang Huang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wen Sang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | | | - Bao-Li Qiu
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|