1
|
Einenkel R, Ehrhardt J, Zygmunt M, Muzzio DO. Less is more! Low amount of Fusobacterium nucleatum supports macrophage-mediated trophoblast functions in vitro. Front Immunol 2024; 15:1447190. [PMID: 39176096 PMCID: PMC11338817 DOI: 10.3389/fimmu.2024.1447190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
F. nucleatum, involved in carcinogenesis of colon carcinomas, has been described as part of the commensal flora of the female upper reproductive tract. Although its contribution to destructive inflammatory processes is well described, its role as commensal uterine bacteria has not been thoroughly investigated. Since carcinogenesis shares similar mechanisms with early pregnancy development (including proliferation, invasion, blood supply and the induction of tolerance), these mechanisms induced by F. nucleatum could play a role in early pregnancy. Additionally, implantation and placentation require a well-balanced immune activation, which might be suitably managed by the presence of a limited amount of bacteria or bacterial residues. We assessed the effect of inactivated F. nucleatum on macrophage-trophoblast interactions. Monocytic cells (THP-1) were polarized into M1, M2a or M2c macrophages by IFN-γ, IL-4 or TGF-β, respectively, and subsequently treated with inactivated fusobacteria (bacteria:macrophage ratio of 0.1 and 1). Direct effects on macrophages were assessed by viability assay, flow cytometry (antigen presentation molecules and cytokines), qPCR (cytokine expression), in-cell Western (HIF and P-NF-κB) and ELISA (VEGF secretion). The function of first trimester extravillous trophoblast cells (HTR-8/SVneo) in response to macrophage-conditioned medium was microscopically assessed by migration (scratch assay), invasion (sprouting assay) and tube formation. Underlying molecular changes were investigated by ELISA (VEGF secretion) and qPCR (matrix-degrading factors and regulators). Inflammation-primed macrophages (M1) as well as high bacterial amounts increased pro-inflammatory NF-κB expression and inflammatory responses. Subsequently, trophoblast functions were impaired. In contrast, low bacterial stimulation caused an increased HIF activation and subsequent VEGF-A secretion in M2c macrophages. Accordingly, there was an increase of trophoblast tube formation. Our results suggest that a low-mass endometrial/decidual microbiome can be tolerated and while it supports implantation and further pregnancy processes.
Collapse
Affiliation(s)
| | | | | | - Damián Oscar Muzzio
- Department of Gynecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Banchi P, Spanoghe L, Maes D, Morrell J, Van Soom A. The reproductive microbiome in dogs: Friend or foe? Vet J 2024; 304:106100. [PMID: 38484870 DOI: 10.1016/j.tvjl.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The microbiome of the reproductive tract is an area of research in full development. Specifically, the microbiome may be involved in reproductive health, disease, and pregnancy outcomes, as has been shown in humans and animals, including dogs. The aim of the present review was to summarize current knowledge on the microbiome of the canine reproductive tract, to expose the controversial role that some bacterial agents may play in canine subfertility, and to highlight future research perspectives. This review discussed whether the use of antimicrobials in dogs is appropriate to increase reproductive performance and to treat subfertility without proper diagnosis, and the possible use of probiotics to modulate the reproductive canine microbiome. Finally, we indicate areas in which scientific knowledge is currently lacking, and could be promising directions for future research.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium; Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| | - Lotte Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Jane Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
3
|
Chabas M, Armengaud J, Alpha-Bazin B. A Simplified Label-Free Method for Proteotyping Sets of Six Isolates in a Single Liquid Chromatography-High-Resolution Tandem Mass Spectrometry Analysis. J Proteome Res 2024; 23:881-890. [PMID: 38327087 DOI: 10.1021/acs.jproteome.3c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Clinical diagnostics and microbiology require high-throughput identification of microorganisms. Sample multiplexing prior to detection is an attractive means to reduce analysis costs and time-to-result. Recent studies have demonstrated the discriminative power of tandem mass spectrometry-based proteotyping. This technology can rapidly identify the most likely taxonomical position of any microorganism, even uncharacterized organisms. Here, we present a simplified label-free multiplexing method to proteotype isolates by tandem mass spectrometry that can identify six microorganisms in a single 20 min analytical run. The strategy involves the production of peptide fractions with distinct hydrophobicity profiles using spin column fractionation. Assemblages of different fractions can then be analyzed using mass spectrometry. Results are subsequently interpreted based on the hydrophobic characteristics of the peptides detected, which make it possible to link each taxon identified to the initial sample. The methodology was tested on 32 distinct sets of six organisms including several worst-scenario assemblages-with differences in sample quantities or the presence of the same organisms in multiple fractions-and proved to be robust. These results pave the way for the deployment of tandem mass spectrometry-based proteotyping in microbiology laboratories.
Collapse
Affiliation(s)
- Madisson Chabas
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze 30200, France
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, Bagnols-sur-Cèze F-30207, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze 30200, France
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze 30200, France
| |
Collapse
|
4
|
Vanstokstraeten R, Demuyser T, Piérard D, Wybo I, Blockeel C, Mackens S. Culturomics in Unraveling the Upper Female Reproductive Tract Microbiota. Semin Reprod Med 2023; 41:151-159. [PMID: 38101449 DOI: 10.1055/s-0043-1777758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In recent years, the study of the human microbiome has surged, shedding light on potential connections between microbiome composition and various diseases. One specific area of intense interest within this research is the female reproductive tract, as it holds the potential to influence the process of embryo implantation. Advanced sequencing technologies have delivered unprecedented insights into the microbial communities, also known as microbiota, residing in the female reproductive tract. However, their efficacy encounters significant challenges when analyzing low-biomass microbiota, such as those present in the endometrium. These molecular techniques are susceptible to contamination from laboratory reagents and extraction kits, leading to sequencing bias that can significantly alter the perceived taxonomy of a sample. Consequently, investigating the microbiota of the upper female reproductive tract necessitates the exploration of alternative methods. In this context, the current review delves into the application of culturomics in unraveling the upper female reproductive tract microbiota. While culturomics holds value in research, its transition to routine clinical practice appears remote, at least in the foreseeable future.
Collapse
Affiliation(s)
- Robin Vanstokstraeten
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- AIMS Lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Christophe Blockeel
- Brussels IVF, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Shari Mackens
- Brussels IVF, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
5
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
6
|
Cariati F, Carotenuto C, Bagnulo F, Pacella D, Marrone V, Paolillo R, Catania MR, Di Girolamo R, Conforti A, Strina I, Alviggi C. Endometrial microbiota profile in in-vitro fertilization (IVF) patients by culturomics-based analysis. Front Endocrinol (Lausanne) 2023; 14:1204729. [PMID: 37635964 PMCID: PMC10450216 DOI: 10.3389/fendo.2023.1204729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction It is well recognized that the human uterus and adjoining tissues of the female reproductive tract exist in a non-sterile state where dysbiosis can impact reproductive outcomes. The endometrial microbiota is a part of this greater milieu. To date, it has largely been studied using 16S rRNA or metagenomics-based methodologies. Despite the known advantages of sequencing analysis, several difficulties have been noted including sample contamination and standardization of DNA extraction or sequencing. The aim of this study was to use a culturomics-based method to analyze the endometrial microbiota and correlate the results with ongoing pregnancy rates. Methods A prospective cohort study was performed at the University of Naples from June 2022 to December 2022. Ninety-three patients undergoing an IVF cycle with single embryo transfer (ET) (fresh or frozen) were enrolled in the study. Following ET, the catheter tip was inserted into brain heart infusion (BHI) medium under sterile conditions for culture. After 24h and 48h of incubation the microorganisms in the colonies were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Results Overall, 68 (73,92%) patients resulted positive for one or more microbes and 25 patients (26,08%) had no microbial growth. Across all participants, the four most important phyla were Firmicutes (87,76%), Proteobacteria (27,94%), Actinobacteria (10,29%) and Ascomycota (8,82%). Lactobacillus species, in particular, was significantly correlated with ongoing pregnancy rate (p=0,05). On the other hand, Staphylococcus subspecies (spp.) (p<0,05) and Enterobacteriaceae (p<0,001) were found to have a negative impact on the implantation rate. Discussion Detection of bacteria by culturomics from catheter tips used for embryo transfer has been shown to be a reliable method to detect pathogen growth. Endometrial microbiota testing in clinical practice could certainly offer a means to further improve diagnosis and treatment strategies in IVF patients.
Collapse
Affiliation(s)
- Federica Cariati
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Consolata Carotenuto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Francesca Bagnulo
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Daniela Pacella
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Marrone
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Rossella Paolillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Raffaella Di Girolamo
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Ida Strina
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Carlo Alviggi
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Vanstokstraeten R, Callewaert E, Blotwijk S, Rombauts E, Crombé F, Emmerechts K, Soetens O, Vandoorslaer K, De Geyter D, Allonsius C, Vander Donck L, Blockeel C, Wybo I, Piérard D, Demuyser T, Mackens S. Comparing Vaginal and Endometrial Microbiota Using Culturomics: Proof of Concept. Int J Mol Sci 2023; 24:5947. [PMID: 36983020 PMCID: PMC10055768 DOI: 10.3390/ijms24065947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
It is generally accepted that microorganisms can colonize a non-pathological endometrium. However, in a clinical setting, endometrial samples are always collected by passing through the vaginal-cervical route. As such, the vaginal and cervical microbiomes can easily cross-contaminate endometrial samples, resulting in a biased representation of the endometrial microbiome. This makes it difficult to demonstrate that the endometrial microbiome is not merely a reflection of contamination originating from sampling. Therefore, we investigated to what extent the endometrial microbiome corresponds to that of the vagina, applying culturomics on paired vaginal and endometrial samples. Culturomics could give novel insights into the microbiome of the female genital tract, as it overcomes sequencing-related bias. Ten subfertile women undergoing diagnostic hysteroscopy and endometrial biopsy were included. An additional vaginal swab was taken from each participant right before hysteroscopy. Both endometrial biopsies and vaginal swabs were analyzed using our previously described WASPLab-assisted culturomics protocol. In total, 101 bacterial and two fungal species were identified among these 10 patients. Fifty-six species were found in endometrial biopsies and 90 were found in vaginal swabs. On average, 28 % of species were found in both the endometrial biopsy and vaginal swab of a given patient. Of the 56 species found in the endometrial biopsies, 13 were not found in the vaginal swabs. Of the 90 species found in vaginal swabs, 47 were not found in the endometrium. Our culturomics-based approach sheds a different light on the current understanding of the endometrial microbiome. The data suggest the potential existence of a unique endometrial microbiome that is not merely a presentation of cross-contamination derived from sampling. However, we cannot exclude cross-contamination completely. In addition, we observe that the microbiome of the vagina is richer in species than that of the endometrium, which contradicts the current sequence-based literature.
Collapse
Affiliation(s)
- Robin Vanstokstraeten
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Ellen Callewaert
- Department of Pharmaceutical Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Susanne Blotwijk
- Biostatistics and Medical Informatics Research Group (BISI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Eleni Rombauts
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Florence Crombé
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Kristof Emmerechts
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Oriane Soetens
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Kristof Vandoorslaer
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Deborah De Geyter
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Camille Allonsius
- Department of Bioscience Engineering, University of Antwerp (UA), 2020 Antwerp, Belgium
| | - Leonore Vander Donck
- Department of Bioscience Engineering, University of Antwerp (UA), 2020 Antwerp, Belgium
| | - Christophe Blockeel
- Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- AIMS Lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Shari Mackens
- Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| |
Collapse
|