1
|
Meng H, Yang R, Lin Q, Du W, Chu Z, Cao Y, Du M, Zhao Y, Xu J, Yang Z, Xie X, He L, Huang C. Isorhapontigenin inhibition of basal muscle-invasive bladder cancer attributed to its downregulation of SNHG1 and DNMT3b. BMC Cancer 2024; 24:737. [PMID: 38879516 PMCID: PMC11180402 DOI: 10.1186/s12885-024-12490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.
Collapse
Affiliation(s)
- Hao Meng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Rui Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Wenqi Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng Chu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yaxin Cao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Mengxiang Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Yazhen Zhao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Jiheng Xu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Xiaomin Xie
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lijiong He
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China.
| |
Collapse
|
2
|
Griffin RL, Shuman L, Yamashita H, Wu Q, Chen G, Brown RM, Vander Griend D, DeGraff DJ, Warrick JI. The transcription factor sex-determining region Y-box 2 (SOX2) in bladder cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:88-99. [PMID: 38736621 PMCID: PMC11087210 DOI: 10.62347/meqo6014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Sex-determining region Y-box 2 (SOX2) is a transcription factor with a central role in embryologic development. SOX2 is also an oncogene in several cancer types. Prior work by our group has shown SOX2 activity associates with cell cycle dysregulation in early-stage bladder cancer. The present study was thus undertaken to broadly investigate SOX2 in bladder cancer, with emphasis on associations with tumor stage, clinical outcomes, and tumorigenicity. Gene expression was quantified by immunohistochemistry in an established tissue microarray (n=303 cystectomy specimens, all stages) and whole tissue sections of noninvasive papillary urothelial carcinoma (n=25). Gene expression by RNA sequencing was evaluated in non-muscle invasive and muscle-invasive cohorts from publicly available repositories. By immunohistochemistry, SOX2 was expressed in 40% of whole tissue sections of noninvasive papillary carcinoma, which correlated with SOX2 expression by RNA sequencing (r=0.6, P=0.001, Spearman correlation). Expression tended to be focal (median H-score =6). SOX2 was expressed in only 9% of TMA cases, consistent with focal expression. SOX2 expression was substantially higher in muscle-invasive compared with noninvasive papillary urothelial carcinoma by RNA sequencing (P<0.001, Wilcoxon rank sum test). SOX2 expression associated with stage progression in lamina-propria invasive cancers (hazard ratio =2, P=0.05, Cox model, binary, RNA sequencing) but not noninvasive papillary cancers (P=0.5, Cox model, binary, RNA sequencing). SOX2 expression did not associate with overall survival in muscle-invasive carcinoma. Activity of SOX2 in bladder cancer was tested in vivo using murine allografts created with MB49 cells that express human SOX2 (MB49-SOX). MB49-SOX allografts expressed this protein focally by immunohistochemistry, much like human tumors. Compared with controls, MB49 allografts demonstrated larger tumor size (P=0.03, Wilcoxon rank sum test) and higher tumor burden in mesenteric metastases (P=0.009, Wilcoxon rank sum test). Though SOX2 expression is focal within tumors, it may drive tumorigenesis, increase growth rate, and promote aggressive features of bladder cancer, particularly stage progression of early-stage disease.
Collapse
Affiliation(s)
- Rachel L Griffin
- Department of Comparative Medicine, Penn State College of MedicineHershey, PA, USA
| | - Lauren Shuman
- Department of Urology, Penn State College of MedicineHershey, PA, USA
| | | | - Qingqing Wu
- Department of Pathology, Penn State College of MedicineHershey, PA, USA
| | - Guoli Chen
- Department of Pathology, Penn State College of MedicineHershey, PA, USA
| | - Ryan M Brown
- Department of Pathology, University of Illinois at ChicagoChicago, IL, USA
| | - Don Vander Griend
- Department of Pathology, University of Illinois at ChicagoChicago, IL, USA
| | - David J DeGraff
- Department of Urology, Penn State College of MedicineHershey, PA, USA
- Department of Pathology, Penn State College of MedicineHershey, PA, USA
| | - Joshua I Warrick
- Department of Urology, Penn State College of MedicineHershey, PA, USA
- Department of Pathology, Penn State College of MedicineHershey, PA, USA
| |
Collapse
|
3
|
Jiang J, Wang Y, Sun M, Luo X, Zhang Z, Wang Y, Li S, Hu D, Zhang J, Wu Z, Chen X, Zhang B, Xu X, Wang S, Xu S, Huang W, Xia L. SOX on tumors, a comfort or a constraint? Cell Death Discov 2024; 10:67. [PMID: 38331879 PMCID: PMC10853543 DOI: 10.1038/s41420-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|