1
|
Yan M, Wang Z, Qiu Z, Cui Y, Xiang Q. Platelet signaling in immune landscape: comprehensive mechanism and clinical therapy. Biomark Res 2024; 12:164. [PMID: 39736771 DOI: 10.1186/s40364-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Platelets are essential for blood clotting and maintaining normal hemostasis. In pathological conditions, platelets are increasingly recognized as crucial regulatory factors in various immune-mediated inflammatory diseases. Resting platelets are induced by various factors such as immune complexes through Fc receptors, platelet-targeting autoantibodies and other platelet-activating stimuli. Platelet activation in immunological processes involves the release of immune activation stimuli, antigen presentation and interaction with immune cells. Platelets participate in both the innate immune system (neutrophils, monocytes/macrophages, dendritic cells (DCs) and Natural Killer (NK) cells and the adaptive immune system (T and B cells). Clinical therapeutic strategies include targeting platelet activation, platelet-immune cell interaction and platelet-endothelial cell interaction, which display positive development prospects. Understanding the mechanisms of platelets in immunity is important, and developing targeted modulations of these mechanisms will pave the way for promising therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhiwei Qiu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Hesen N, Anany M, Freidel A, Baker M, Siegmund D, Zaitseva O, Wajant H, Lang I. Genetically engineered IgG1 and nanobody oligomers acquire strong intrinsic CD40 agonism. Bioengineered 2024; 15:2302246. [PMID: 38214443 PMCID: PMC10793706 DOI: 10.1080/21655979.2024.2302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.
Collapse
Affiliation(s)
- Nienke Hesen
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Giza, Egypt
| | - Andre Freidel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mediya Baker
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| |
Collapse
|
3
|
Bailey JT, Cangialosi S, Moshkani S, Rexhouse C, Cimino JL, Robek MD. CD40 stimulation activates CD8+ T cells and controls HBV in CD4-depleted mice. JHEP Rep 2024; 6:101121. [PMID: 39282227 PMCID: PMC11399595 DOI: 10.1016/j.jhepr.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background & Aims HBV treatment is challenging due to the persistence of the covalently closed circular DNA replication pool, which remains unaffected by antiviral intervention. In this study, we determined whether targeting antigen-presenting cells via CD40 stimulation represents an appropriate therapeutic approach for achieving sustained HBV control in a mouse model of HBV replication. Methods Mice were transduced with an adeno-associated virus encoding the HBV genome (AAV-HBV) to initiate HBV replication and were administered agonistic CD40 antibody. CD4-depleting antibody was administered in addition to the CD40 antibody. Viral antigens in the blood were measured over time to determine HBV control. HBV-specific CD8+ T cells were quantified in the spleen and liver at the experimental endpoint. Results CD40 stimulation in CD4-depleted AAV-HBV mice resulted in the clearance of HBsAg and HBeAg, along with a reduction in liver HBV mRNA, contrasting with CD4-competent counterparts. CD8+ T cells were indispensable for CD40-mediated HBV control, determined by HBV persistence following their depletion. In CD4-replete mice, CD40 stimulation initially facilitated the expansion of HBV-specific CD8+ T cells, which subsequently could not control HBV. Finally, α-CD4/CD40 treatment reduced antigenemia and liver HBV mRNA levels in chronic AAV-HBV mice, with further enhancement through synergy with immunization by VSV-MHBs (vesicular stomatitis virus expressing middle HBsAg). Conclusions Our findings underscore the potential of CD40 stimulation as a targeted therapeutic strategy for achieving sustained HBV control and reveal a CD4+ T cell-dependent limitation on CD40-mediated antiviral efficacy. Impact and implications Immunotherapy has the potential to overcome immune dysfunction in chronic HBV infection. Using a mouse model of HBV replication, this study shows that CD40 stimulation can induce sustained HBV control, which is dependent on CD8+ T cells and further enhanced by co-immunization. Unexpectedly, CD40-mediated HBV reduction was improved by the depletion of CD4+ cells. These findings suggest potential strategies for reversing HBV persistence in infected individuals.
Collapse
Affiliation(s)
- Jacob T Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sophia Cangialosi
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Safiehkhatoon Moshkani
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Catherine Rexhouse
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jesse L Cimino
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Michael D Robek
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
4
|
Liu Y, Huang Y, Cui HW, Wang Y, Ma Z, Xiang Y, Xin HY, Liang JQ, Xin HW. Perspective view of allogeneic IgG tumor immunotherapy. Cancer Cell Int 2024; 24:100. [PMID: 38461238 PMCID: PMC10924995 DOI: 10.1186/s12935-024-03290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yuanyi Huang
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Hong-Wei Cui
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China
| | - YingYing Wang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - ZhaoWu Ma
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Jun-Qing Liang
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Key Laboratory of Human Genetic Diseases Research of Inner Mongolia, Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng, 024000, Inner Mongolian Autonomous Region, China.
| |
Collapse
|