1
|
Qi H, Gao Y, Zhang Z, Zhang X, Tian D, Jiang Y, Zhang L, Zeng N, Yang R. HouShiHeiSan attenuates sarcopenia in middle cerebral artery occlusion (MCAO) rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118917. [PMID: 39423947 DOI: 10.1016/j.jep.2024.118917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physical therapy is the main clinical treatment for limb symptoms after ischemic stroke, and there is a lack of reliable drug intervention programs. HouShiHeiSan (HS)comes from "Synopsis of the Golden Chamber", where it is recorded: "seauelae of wind stroke and heaviness of limbs", indicating this formulae is a promising opion for clinical practice. AIM OF THE STUDY The aim of this study is to explore the therapeutic effect of HS on sarcopenia after ischemic stroke (ISS) by using the middle cerebral artery occlusion (MCAO) rats. MATERIALS AND METHODS After 7 days of adaptive feeding Sprague-Dawley (SD) rats were randomly divided into sham and MCAO surgery groups. After MCAO operation, the agreement of the models was evaluated with a laser speckle instrument, and then, treatment groups were administered HS and related solvent. During the 7 days treatment period, the Zea-Longa score was used to assess the neural function, the treadmill for exercise capacity and traction instrument for grip strength. Besides, the physiological electrical signal system was used to record muscular electrical signals, while the muscle thickness was measured by ultrasound. After data acquisition on the 7th day after MCAO operation, the soleus muscle was dissected, and the indexes of length, weight of whole muscle tissue and cross-sectional area of muscular cells by H&E were recorded. Subsequently, mechanistic indicators were examined. MuRF1 and MAFbx expression was detected by immunohistochemistry (IHC). Furthermore, the expression level of more related indicators of muscular differentiation and cellular proterin balance, including mTOR, p-mTOR, AKT, p-AKT, p70s6k, p-p70s6, FOXO1, p-FOXO1, MyoD1, Myostatin, MuRF1 and MAFbx, were tested via Western blot. RESULTS HS improved motor performance and promoted muscle regeneration in MCAO rats. In terms of motor ability, HS mixed with alcohol significantly improved the neurological function damage, reduce the weight loss, increase the running distance per unit time and increase the grip strength. The postoperative muscle electrical signal intensity increased, and muscle thickness, weight, and length were maintained. The HS with alcohol group significantly maintained the cross-sectional size of muscle cells and reduced the number of MyoD1 and myostatin-positive cells in the muscle tissue. It simultaneously promoted the expression of p-mTOR, p-AKT, p-p70s6k, and MyoD1 to promote the synthesis of muscle proteins and inhibited the expression of p-FOXO1, myostatin, MAFbx, and MuRF1 to reduce muscle protein degradation. CONCLUSION HS can enhance muscle protein synthesis and decrease protein breakdown by activating the AKT/mTOR/FOXO1 pathway, thereby preserving muscle health and enhancing motor performance following stroke in rats.
Collapse
Affiliation(s)
- Hu Qi
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanlin Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zeyang Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiongwei Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Tian
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanning Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Zhang
- Department of Otorhinolaryngology, Chengdu Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| | - Nan Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ruocong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Guo R, Wu Z, Liu A, Li Q, Han T, Shen C. Hypoxic preconditioning-engineered bone marrow mesenchymal stem cell-derived exosomes promote muscle satellite cell activation and skeletal muscle regeneration via the miR-210-3p/KLF7 mechanism. Int Immunopharmacol 2024; 142:113143. [PMID: 39306891 DOI: 10.1016/j.intimp.2024.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024]
Abstract
Sarcopenia is a gradual and widespread decline in muscle mass and function in skeletal muscle, leading to significant implications for individuals and society. Currently, there is a lack of effective treatment methods for sarcopenia. Muscle satellite cells(SCs) play a crucial role in the occurrence and development of sarcopenia, and their proliferation and differentiation abilities are closely related to the progression of disease. This study evaluated the effects of exosomes derived from hypoxic preconditioning bone marrow mesenchymal stem cells (BMSCs) on the proliferation of SCs and skeletal muscle regeneration. We found that the capacity for the proliferation and differentiation of SCs in elderly rats was notably diminished, leading us to create a sarcopenia model in elderly rats. By separating and extracting exosomes from BMSCs treated with normoxic (N-Exos) and hypoxic (H-Exos) conditions, in vivo and in vitro studies showed that both N-Exos and H-Exos can regulate the proliferation and differentiation of SCs in elderly rats, and promote skeletal muscle regeneration and functional recovery. The beneficial effects of H-Exos were also more significant than those of the N-Exos group. In vitro studies demonstrated that H-Exos could influence the expression of the KLF7 gene and protein in SCs by delivering miR-210-3P. This, in turn, impacted the phosphorylation of the PI3K/AKT signaling pathway and contributed to the function of SCs. H-Exos stimulated SCs and promoted skeletal muscle regeneration during sarcopenia by delivering miR-210-3P to target the KLF7/PI3K/AKT signaling pathway. This may serve as a possible treatment option for sarcopenia.
Collapse
Affiliation(s)
- Ruocheng Guo
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Ao Liu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Qiuwei Li
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
3
|
Zhou L, Zhang C, Shi T, Wu D, Chen H, Han J, Chen D, Lin J, Liu W. Functionalized 3D-printed GelMA/Laponite hydrogel scaffold promotes BMSCs recruitment through osteoimmunomodulatory enhance osteogenic via AMPK/mTOR signaling pathway. Mater Today Bio 2024; 29:101261. [PMID: 39381262 PMCID: PMC11460517 DOI: 10.1016/j.mtbio.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The migration and differentiation of bone marrow mesenchymal stem cells (BMSCs) play crucial roles in bone repair processes. However, conventional scaffolds often lack of effectively inducing and recruiting BMSCs. In our study, we present a novel approach by introducing a 3D-bioprinted scaffold composed of hydrogels, with the addition of laponite to the GelMA solution, aimed at enhancing scaffold performance. Both in vivo and in vitro experiments have confirmed the outstanding biocompatibility of the scaffold. Furthermore, for the first time, Apt19s has been chemically modified onto the surface of the hydrogel scaffold, resulting in a remarkable enhancement in the migration and adhesion of BMSCs. Moreover, the scaffold has demonstrated robust osteogenic differentiation capability in both in vivo and in vitro environments. Additionally, the hydrogel scaffold has shown the ability to induce the polarization of macrophages from M1 to M2, thereby facilitating the osteogenic differentiation of BMSCs via the bone immune pathway. Through RNA-seq analysis, it has been revealed that macrophages regulate the osteogenic differentiation of BMSCs through the AMPK/mTOR signaling pathway. In summary, the functionalized GelMA/Laponite scaffold offers a cost-effective approach for tailored in situ bone regeneration.
Collapse
Affiliation(s)
- Linquan Zhou
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Chengcheng Zhang
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Tengbin Shi
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Dingwei Wu
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Huina Chen
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Jiaxin Han
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Dehui Chen
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Wenge Liu
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| |
Collapse
|
4
|
Zhang Z, Wang Y, Chen X, Wu C, Zhou J, Chen Y, Liu X, Tang X. The aging heart in focus: The advanced understanding of heart failure with preserved ejection fraction. Ageing Res Rev 2024; 101:102542. [PMID: 39396676 DOI: 10.1016/j.arr.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for 50 % of heart failure (HF) cases, making it the most common type of HF, and its prevalence continues to increase in the aging society. HFpEF is a systemic syndrome resulting from many risk factors, such as aging, metabolic syndrome, and hypertension, and its clinical features are highly heterogeneous in different populations. HFpEF syndrome involves the dysfunction of multiple organs, including the heart, lung, muscle, and vascular system. The heart shows dysfunction of various cells, including cardiomyocytes, endothelial cells, fibroblasts, adipocytes, and immune cells. The complex etiology and pathobiology limit experimental research on HFpEF in animal models, delaying a comprehensive understanding of the mechanisms and making treatment difficult. Recently, many scientists and cardiologists have attempted to improve the clinical outcomes of HFpEF. Recent advances in clinically related animal models and systemic pathology studies have improved our understanding of HFpEF, and clinical trials involving sodium-glucose cotransporter 2 inhibitors have significantly enhanced our confidence in treating HFpEF. This review provides an updated comprehensive discussion of the etiology and pathobiology, molecular and cellular mechanisms, preclinical animal models, and therapeutic trials in animals and patients to enhance our understanding of HFpEF and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Jingyue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Yan Chen
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China.
| |
Collapse
|
5
|
Liguori S, Moretti A, Paoletta M, Gimigliano F, Iolascon G. Role of Magnesium in Skeletal Muscle Health and Neuromuscular Diseases: A Scoping Review. Int J Mol Sci 2024; 25:11220. [PMID: 39457008 PMCID: PMC11508242 DOI: 10.3390/ijms252011220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Magnesium (Mg) is a vital element for various metabolic and physiological functions in the human body, including its crucial role in skeletal muscle health. Hypomagnesaemia is frequently reported in many muscle diseases, and it also seems to contribute to the pathogenesis of skeletal muscle impairment in patients with neuromuscular diseases. The aim of this scoping review is to analyze the role of Mg in skeletal muscle, particularly its biological effects on muscle tissue in neuromuscular diseases (NMDs) in terms of biological effects and clinical implications. This scoping review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. From the 305 studies identified, 20 studies were included: 4 preclinical and 16 clinical studies. Preclinical research has demonstrated that Mg plays a critical role in modulating pathways affecting skeletal muscle homeostasis and oxidative stress in muscles. Clinical studies have shown that Mg supplementation can improve muscle mass, respiratory muscle strength, and exercise recovery and reduce muscle soreness and inflammation in athletes and patients with various conditions. Despite the significant role of Mg in muscle health, there is a lack of research on Mg supplementation in NMDs. Given the potential similarities in pathogenic mechanisms between NMDs and Mg deficiency, further studies on the effects of Mg supplementation in NMDs are warranted. Overall, maintaining optimal Mg levels through dietary intake or supplementation may have important implications for improving muscle health and function, particularly in conditions associated with muscle weakness and atrophy.
Collapse
Affiliation(s)
- Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n. 1, 80138 Naples, Italy;
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n. 1, 80138 Naples, Italy;
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
| |
Collapse
|
6
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
7
|
Zhang N, Zhai L, Wong RMY, Cui C, Law SW, Chow SKH, Goodman SB, Cheung WH. Harnessing immunomodulation to combat sarcopenia: current insights and possible approaches. Immun Ageing 2024; 21:55. [PMID: 39103919 DOI: 10.1186/s12979-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sarcopenia is a complex age-associated syndrome of progressive loss of muscle mass and strength. Although this condition is influenced by many factors, age-related changes in immune function including immune cell dynamics, and chronic inflammation contribute to its progression. The complex interplay between the immune system, gut-muscle axis, and autophagy further underscores their important roles in sarcopenia pathogenesis. Immunomodulation has emerged as a promising strategy to counteract sarcopenia. Traditional management approaches to treat sarcopenia including physical exercise and nutritional supplementation, and the emerging technologies of biophysical stimulation demonstrated the importance of immunomodulation and regulation of macrophages and T cells and reduction of chronic inflammation. Treatments to alleviate low-grade inflammation in older adults by modulating gut microbial composition and diversity further combat sarcopenia. Furthermore, some pharmacological interventions, nano-medicine, and cell therapies targeting muscle, gut microbiota, or autophagy present additional avenues for immunomodulation in sarcopenia. This narrative review explores the immunological underpinnings of sarcopenia, elucidating the relationship between the immune system and muscle during ageing. Additionally, the review discusses new areas such as the gut-muscle axis and autophagy, which bridge immune system function and muscle health. Insights into current and potential approaches for sarcopenia management through modulation of the immune system are provided, along with suggestions for future research directions and therapeutic strategies. We aim to guide further investigation into clinical immunological biomarkers and identify indicators for sarcopenia diagnosis and potential treatment targets to combat this condition. We also aim to draw attention to the importance of considering immunomodulation in the clinical management of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liting Zhai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Wu W, Guo X, Qu T, Huang Y, Tao J, He J, Wang X, Luo J, An P, Zhu Y, Sun Y, Luo Y. The Combination of Lactoferrin and Creatine Ameliorates Muscle Decay in a Sarcopenia Murine Model. Nutrients 2024; 16:1958. [PMID: 38931310 PMCID: PMC11207062 DOI: 10.3390/nu16121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related condition characterized by progressive loss of muscle mass, strength, and function. The occurrence of sarcopenia has a huge impact on physical, psychological, and social health. Therefore, the prevention and treatment of sarcopenia is becoming an important public health issue. METHOD 35 six-week-old male C57BL/6 mice were randomly divided into five groups, one of which served as a control group, while the rest of the groups were constructed as a model of sarcopenia by intraperitoneal injection of D-galactose. The intervention with lactoferrin, creatine, and their mixtures, respectively, was carried out through gavage for 8 weeks. Muscle function was assessed based on their endurance, hanging time, and grip strength. The muscle tissues were weighed to assess the changes in mass, and the muscle RNA was extracted for myogenic factor expression and transcriptome sequencing to speculate on the potential mechanism of action by GO and KEGG enrichment analysis. RESULT The muscle mass (lean mass, GAS index), and muscle function (endurance, hanging time, and grip strength) decreased, and the size and structure of myofiber was smaller in the model group compared to the control group. The intervention with lactoferrin and creatine, either alone or combination, improved muscle mass and function, restored muscle tissue, and increased the expression of myogenic regulators. The combined group demonstrated the most significant improvement in these indexes. The RNA-seq results revealed enrichment in the longevity-regulated pathway, MAPK pathway, focal adhesion, and ECM-receptor interaction pathway in the intervention group. The intervention group may influence muscle function by affecting the proliferation, differentiation, senescence of skeletal muscle cell, and contraction of muscle fiber. The combined group also enriched the mTOR-S6K/4E-BPs signaling pathway, PI3K-Akt signaling pathway, and energy metabolism-related pathways, including Apelin signaling, insulin resistance pathway, and adipocytokine signaling pathway, which affect energy metabolism in muscle. CONCLUSIONS Lactoferrin and creatine, either alone or in combination, were found to inhibit the progression of sarcopenia by influencing the number and cross-sectional area of muscle fibers and muscle protein synthesis. The combined intervention appears to exert a more significant effect on energy metabolism.
Collapse
Affiliation(s)
- Wenbin Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Xinlu Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Taiqi Qu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yuejia Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Jin Tao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China;
| | - Xiaoping Wang
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China;
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yinhua Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| |
Collapse
|
9
|
Liu L, Luo P, Wen P, Xu P. The role of magnesium in the pathogenesis of osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1406248. [PMID: 38904051 PMCID: PMC11186994 DOI: 10.3389/fendo.2024.1406248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Magnesium (Mg), a nutritional element which is essential for bone development and mineralization, has a role in the progression of osteoporosis. Osteoporosis is a multifactorial disease characterized by significant deterioration of bone microstructure and bone loss. Mg deficiency can affect bone structure in an indirect way through the two main regulators of calcium homeostasis (parathyroid hormone and vitamin D). In human osteoblasts (OBs), parathyroid hormone regulates the expression of receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin (OPG) to affect osteoclast (OC) formation. In addition, Mg may also affect the vitamin D3 -mediated bone remodeling activity. vitamin D3 usually coordinates the activation of the OB and OC. The unbalanced activation OC leads to bone resorption. The RANK/RANKL/OPG axis is considered to be a key factor in the molecular mechanism of osteoporosis. Mg participates in the pathogenesis of osteoporosis by affecting the regulation of parathyroid hormone and vitamin D levels to affect the RANK/RANKL/OPG axis. Different factors affecting the axis and enhancing OC function led to bone loss and bone tissue microstructure damage, which leads to the occurrence of osteoporosis. Clinical research has shown that Mg supplementation can alleviate the symptoms of osteoporosis to some extent.
Collapse
Affiliation(s)
- Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pan Luo
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Wen
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Liu D, Wang S, Liu S, Wang Q, Che X, Wu G. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies. Mol Aspects Med 2024; 97:101270. [PMID: 38583268 DOI: 10.1016/j.mam.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The onset of sarcopenia is intimately linked with aging, posing significant implications not only for individual patient quality of life but also for the broader societal healthcare framework. Early and accurate identification of sarcopenia and a comprehensive understanding of its mechanistic underpinnings and therapeutic targets paramount to addressing this condition effectively. This review endeavors to present a cohesive overview of recent advancements in sarcopenia research and diagnosis. We initially delve into the contemporary diagnostic criteria, specifically referencing the European Working Group on Sarcopenia in Older People (EWGSOP) 2 and Asian Working Group on Sarcopenia (AWGS) 2019 benchmarks. Additionally, we elucidate comprehensive assessment techniques for muscle strength, quantity, and physical performance, highlighting tools such as grip strength, chair stand test, dual-energy X-ray Absorptiometry (DEXA), bioelectrical impedance analysis (BIA), gait speed, and short physical performance battery (SPPB), while also discussing their inherent advantages and limitations. Such diagnostic advancements pave the way for early identification and unequivocal diagnosis of sarcopenia. Proceeding further, we provide a deep-dive into sarcopenia's pathogenesis, offering a thorough examination of associated signaling pathways like the Myostatin, AMP-activated protein kinase (AMPK), insulin/IGF-1 Signaling (IIS), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Each pathway's role in sarcopenia mediation is detailed, underscoring potential therapeutic target avenues. From a mechanistic perspective, the review also underscores the pivotal role of mitochondrial dysfunction in sarcopenia, emphasizing elements such as mitochondrial oxidative overload, mitochondrial biogenesis, and mitophagy, and highlighting their therapeutic significance. At last, we capture recent strides made in sarcopenia treatment, ranging from nutritional and exercise interventions to potential pharmacological and supplementation strategies. In sum, this review meticulously synthesizes the latest scientific developments in sarcopenia, aiming to enhance diagnostic precision in clinical practice and provide comprehensive insights into refined mechanistic targets and innovative therapeutic interventions, ultimately contributing to optimized patient care and advancements in the field.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuang Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
11
|
Sun Y, Wei X, Zhao T, Shi H, Hao X, Wang Y, Zhang H, Yao Z, Zheng M, Ma T, Fu T, Lu J, Luo X, Yan Y, Wang H. Oleanolic acid alleviates obesity-induced skeletal muscle atrophy via the PI3K/Akt signaling pathway. FEBS Open Bio 2024; 14:584-597. [PMID: 38366735 PMCID: PMC10988678 DOI: 10.1002/2211-5463.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Yaqin Sun
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaofang Wei
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tong Zhao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Hongwei Shi
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaojing Hao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yue Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Huiling Zhang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Zhichao Yao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Minxing Zheng
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tianyun Ma
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tingting Fu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Jiayin Lu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaomao Luo
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yi Yan
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Haidong Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
12
|
Luo W, Zhou Y, Tang Q, Wang Y, Liu Y, Ai L. Downhill running and caloric restriction attenuate insulin resistance associated skeletal muscle atrophy via the promotion of M2-like macrophages through TRIB3-AKT pathway. Free Radic Biol Med 2024; 210:271-285. [PMID: 38036069 DOI: 10.1016/j.freeradbiomed.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUD Downhill running has recently become a promising exercise modality for metabolic syndrome, but the effect and precise mechanism of downhill running training on insulin resistance (IR) induced skeletal muscle atrophy remains unclear. The current study aimed to explore the benefits of downhill running training accompanied by a low-fat diet on skeletal muscle atrophy in IR mice and its possible mechanisms. METHODS For in vivo study, high fat diet (HFD) -induced IR mice were submitted to the downhill running training or/and caloric restriction for 8 weeks. In vitro study was performed using co-cultured RAW264.7 macrophages and C2C12 myoblasts model. Glucose tolerance test (GTT), insulin tolerance test (ITT), immunofluorescence staining, Western blot analysis, hematoxylin and eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), Cell counting kit-8 (CCK-8) assays and glucose uptake assays were employed to explore the benefits and possible mechanisms of downhill running training accompanied by a low-fat diet on IR mice. RESULTS Our data revealed that HFD induces IR, which leading to skeletal muscle atrophy. Downhill running accompanied by caloric restriction mitigated HFD-induced IR and improve skeletal muscle atrophy. Further study suggested that descended TRIB3 mediated the favorable impact of downhill running on IR induced skeletal muscle atrophy by suppressing M1-like macrophages and promoting M2-like macrophages. Macrophages-specific knockdown of TRIB3 exerted similar effects on the macrophage polarization and IR related myogenesis to downhill running training accompanied by caloric restriction. In contrast, macrophages-specific overexpression of TRIB3 descended phosphorylation of AKT, further activated M1-like macrophages and aggravated IR related inhibition of myogenesis. CONCLUSIONS This finding demonstrated the beneficial effects of downhill running training and caloric restriction on IR related skeletal muscle atrophy by promoting M2-like macrophages through TRIB3-AKT pathway.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Qiang Tang
- Department of Sports and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yuhang Wang
- Department of Sports and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yansong Liu
- Department of Sports and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Lei Ai
- Jiangsu Research Institute of Sports Science, Nanjing, China.
| |
Collapse
|
13
|
Peng Y, Wu X, Ma X, Xu D, Wang Y, Xia D. Comparison Between the Clinical Effect of Percutaneous Kyphoplasty for Osteoporosis Vertebral Compression Fracture Patient with or Without Sarcopenia: A Retrospective Cohort Study. Int J Gen Med 2023; 16:3095-3103. [PMID: 37496597 PMCID: PMC10368018 DOI: 10.2147/ijgm.s423016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Background Sarcopenia and osteoporosis vertebral compression fractures (OVCF) are common diseases that increase with age. This study aimed to investigate the effects of sarcopenia on OVCF patients after percutaneous kyphoplasty (PKP). Methods Data of 101 patients who were treated with single-level PKP between January 2021 and March 2022 at Ningbo No.6 Hospital were enrolled. Forty-five OVCF patients with sarcopenia who met our inclusion criteria were included in the Sarcopenia-PKP group (SPKP group), and 56 patients in the Normal-PKP group (NPKP group). All clinical and radiological data were collected from medical records. Baseline characteristics, operation-related parameters (operation time, time to ambulation, hospital stay, surgery segment), clinical outcomes (visual analog score [VAS], Oswestry Disability Index [ODI], Japanese Orthopaedic Association Scores [JOA] of lumber), radiological outcomes (vertebral anterior height rate and local kyphosis angle), Macnab score, and complications were evaluated and compared. Results There were no significant differences in age, sex, surgical segment preoperative VAS score, ODI, or JOA between the two groups (P > 0.05). The SPKP group had a significantly lower body mass index (BMI), bone mineral density (BMD), and smooth muscle index (SMI) than the NPKP group (P < 0.05). Significantly longer hospital stays and time to ambulation in SPKP group than NPKP group (3.7±0.8 vs 3.4±0.5 and 2.0±0.8 vs 1.6±0.5, P < 0.05). In SPKP group, significantly better clinical outcomes at 6- and 12-months follow-up were observed in NPKP group than SPKP group (P < 0.05), and NPKP group showed significantly better in vertebral anterior height rates than SPKP group after 6-month follow-up (P < 0.05). Moreover, there were significantly more cases of complications in the SPKP group (P < 0.05). Conclusion Sarcopenia could reduce the clinical effect of percutaneous kyphoplasty, and furthermore. Related studies are needed to verify the effect of sarcopenia on OVCF patients.
Collapse
Affiliation(s)
- Yujie Peng
- Orthopeadic Department, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Xiaochuan Wu
- Orthopeadic Department, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Xinyu Ma
- Emergency Department, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Dingli Xu
- Clinical Department, Health Science Center, Ningbo University Zhejiang, Ningbo, People’s Republic of China
| | - Yang Wang
- Orthopeadic Department, Ningbo No.6 Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Dongdong Xia
- Orthopeadic Department, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|