1
|
Budusan E, Payne CD, Gonzalez TI, Obergrussberger A, Becker N, Clark RJ, Johan Rosengren K, Rash LD, Cristofori-Armstrong B. The funnel-web spider venom derived single knot peptide Hc3a modulates acid-sensing ion channel 1a desensitisation. Biochem Pharmacol 2024; 228:116175. [PMID: 38552850 DOI: 10.1016/j.bcp.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.
Collapse
Affiliation(s)
- Elena Budusan
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Colton D Payne
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Tye I Gonzalez
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | | | | | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Ben Cristofori-Armstrong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
2
|
Kramer S, Kotapati C, Cao Y, Fry BG, Palpant NJ, King GF, Cardoso FC. High-content fluorescence bioassay investigates pore formation, ion channel modulation and cell membrane lysis induced by venoms. Toxicon X 2024; 21:100184. [PMID: 38389571 PMCID: PMC10882159 DOI: 10.1016/j.toxcx.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Venoms comprise highly sophisticated bioactive molecules modulating ion channels, receptors, coagulation factors, and the cellular membranes. This array of targets and bioactivities requires advanced high-content bioassays to facilitate the development of novel envenomation treatments and biotechnological and pharmacological agents. In response to the existing gap in venom research, we developed a cutting-edge fluorescence-based high-throughput and high-content cellular assay. This assay enables the simultaneous identification of prevalent cellular activities induced by venoms such as membrane lysis, pore formation, and ion channel modulation. By integrating intracellular calcium with extracellular nucleic acid measurements, we have successfully distinguished these venom mechanisms within a single cellular assay. Our high-content bioassay was applied across three cell types exposed to venom components representing lytic, ion pore-forming or ion channel modulator toxins. Beyond unveiling distinct profiles for these action mechanisms, we found that the pore-forming latrotoxin α-Lt1a prefers human neuroblastoma to kidney cells and cardiomyocytes, while the lytic bee peptide melittin is not selective. Furthermore, evaluation of snake venoms showed that Elapid species induced rapid membrane lysis, while Viper species showed variable to no activity on neuroblastoma cells. These findings underscore the ability of our high-content bioassay to discriminate between clades and interspecific traits, aligning with clinical observations at venom level, beyond discriminating among ion pore-forming, membrane lysis and ion channel modulation. We hope our research will expedite the comprehension of venom biology and the diversity of toxins that elicit cytotoxic, cardiotoxic and neurotoxic effects, and assist in identifying venom components that hold the potential to benefit humankind.
Collapse
Affiliation(s)
- Simon Kramer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Charan Kotapati
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| |
Collapse
|
3
|
Yu N, Yan Y, Han Q, Zhang L, Liu Z. Insecticidal toxicity of ω-Atypitoxin-Cs1a and its inhibitory effects on insect voltage-gated calcium channels. PEST MANAGEMENT SCIENCE 2023; 79:4879-4885. [PMID: 37506304 DOI: 10.1002/ps.7689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Excessive use of chemical insecticides raises concerns about insecticide resistance, urging the development of novel insecticides. Peptide neurotoxins from spider venom are an incredibly rich source of ion channel modulators with potent insecticidal activity. A neurotoxin U1-Atypitoxin-Cs1a from the spider Calommata signata was annotated previously. It was of interest to investigate its insecticidal activity and potential molecular targets. RESULTS Cs1a was heterologously expressed, purified and pharmacologically characterized here. The recombinant neurotoxin inhibited high-voltage-activated calcium channel currents with an median inhibitory concentration (IC50 ) value of 0.182 ± 0.026 μm on cockroach DUM neurons and thus was designated as ω-Atypitoxin-Cs1a. The recombinant Cs1a was toxic to three insect pests of agricultural importance, Nilaparvata lugens, Spodoptera frugiperda and Plutella xylostella with median lethal concentration (LD50 ) values of 0.121, 0.172 and 0.356 nmol g-1 , respectively, at 24 h postinjection. Cs1a was equivalently toxic to both insecticide-susceptible and -resistant insects. Cs1a exhibited low toxicity to Danio rerio with an LD50 of 2.316 nmol g-1 . CONCLUSION Our results suggest that ω-Atypitoxin-Cs1a is a potent CaV channel inhibitor and an attractive candidate reagent for pest control and resistance management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lingchun Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Cardoso FC, Walker AA, King GF, Gomez MV. Holistic profiling of the venom from the Brazilian wandering spider Phoneutria nigriventer by combining high-throughput ion channel screens with venomics. Front Mol Biosci 2023; 10:1069764. [PMID: 36865382 PMCID: PMC9972223 DOI: 10.3389/fmolb.2023.1069764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Spider venoms are a unique source of bioactive peptides, many of which display remarkable biological stability and neuroactivity. Phoneutria nigriventer, often referred to as the Brazilian wandering spider, banana spider or "armed" spider, is endemic to South America and amongst the most dangerous venomous spiders in the world. There are 4,000 envenomation accidents with P. nigriventer each year in Brazil, which can lead to symptoms including priapism, hypertension, blurred vision, sweating, and vomiting. In addition to its clinical relevance, P. nigriventer venom contains peptides that provide therapeutic effects in a range of disease models. Methods: In this study, we explored the neuroactivity and molecular diversity of P. nigriventer venom using fractionation-guided high-throughput cellular assays coupled to proteomics and multi-pharmacology activity to broaden the knowledge about this venom and its therapeutic potential and provide a proof-of-concept for an investigative pipeline to study spider-venom derived neuroactive peptides. We coupled proteomics with ion channel assays using a neuroblastoma cell line to identify venom compounds that modulate the activity of voltage-gated sodium and calcium channels, as well as the nicotinic acetylcholine receptor. Results: Our data revealed that P. nigriventer venom is highly complex compared to other neurotoxin-rich venoms and contains potent modulators of voltage-gated ion channels which were classified into four families of neuroactive peptides based on their activity and structures. In addition to the reported P. nigriventer neuroactive peptides, we identified at least 27 novel cysteine-rich venom peptides for which their activity and molecular target remains to be determined. Discussion: Our findings provide a platform for studying the bioactivity of known and novel neuroactive components in the venom of P. nigriventer and other spiders and suggest that our discovery pipeline can be used to identify ion channel-targeting venom peptides with potential as pharmacological tools and to drug leads.
Collapse
Affiliation(s)
- F. C. Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia,Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia,*Correspondence: F. C. Cardoso,
| | - A. A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia,Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - G. F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia,Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - M. V. Gomez
- Department of Neurotransmitters, Institute of Education and Research, Santa Casa, Belo Horizonte, Brazil
| |
Collapse
|