1
|
García Porta C, Mahfooz K, Komorowska J, Garcia-Rates S, Greenfield S. A Novel 14mer Peptide Inhibits Autophagic Flux via Selective Activation of the mTORC1 Signalling Pathway: Implications for Alzheimer's Disease. Int J Mol Sci 2024; 25:12837. [PMID: 39684549 DOI: 10.3390/ijms252312837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
During development, a 14mer peptide, T14, modulates cell growth via the α-7 nicotinic acetylcholine receptor (α7 nAChR). However, this process could become excitotoxic in the context of the adult brain, leading to pathologies such as Alzheimer's disease (AD). Recent work shows that T14 acts selectively via the mammalian target of rapamycin complex 1 (mTORC1). This pathway is essential for normal development but is overactive in AD. The triggering of mTORC1 has also been associated with the suppression of autophagy, commonly observed in ageing and neurodegeneration. We therefore investigated the relationship between T14 and autophagic flux in tissue cultures, mouse brain slices, and human Alzheimer's disease hippocampus. Here, we demonstrate that T14 and p-mTOR s2448 expression significantly increases in AD human hippocampus, which was associated with the gradual decrease in the autophagosome number across Braak stages. During development, the reduction in T14 positively correlated with pTau (Ser202, Thr205) and two selective autophagy receptors: p62 and optineurin. In vitro studies also indicated that T14 increases p-mTOR s2448 expression, resulting in the aggregation of polyubiquinated substances. The effective blockade of T14 via its cyclic variant, NBP14, has been validated in vitro, in vivo, and ex vivo. In this study, NBP14 significantly attenuated p-mTOR s2448 expression and restored normal autophagic flux, as seen with rapamycin. We conclude that T14 acts at the α-7 receptor to selectively activate the mTORC1 pathway and consequently inhibit autophagic flux. Hence, this study describes a further step in the process by which T14 could drive neurodegeneration.
Collapse
Affiliation(s)
- Cloe García Porta
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Kashif Mahfooz
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Joanna Komorowska
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Sara Garcia-Rates
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Susan Greenfield
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| |
Collapse
|
2
|
Ranglani S, Hasan S, Komorowska J, Medina NM, Mahfooz K, Ashton A, Garcia-Ratés S, Greenfield S. A Novel Peptide Driving Neurodegeneration Appears Exclusively Linked to the α7 Nicotinic Acetylcholine Receptor. Mol Neurobiol 2024; 61:8206-8218. [PMID: 38483654 DOI: 10.1007/s12035-024-04079-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sibah Hasan
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK.
| | - Joanna Komorowska
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | | | - Kashif Mahfooz
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Anna Ashton
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sara Garcia-Ratés
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Susan Greenfield
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| |
Collapse
|
3
|
Garcia Ratés S, García‐Ayllón M, Falgàs N, Brangman SA, Esiri MM, Coen CW, Greenfield SA. Evidence for a novel neuronal mechanism driving Alzheimer's disease, upstream of amyloid. Alzheimers Dement 2024; 20:5027-5034. [PMID: 38780014 PMCID: PMC11247685 DOI: 10.1002/alz.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
This perspective offers an alternative to the amyloid hypothesis in the etiology of Alzheimer's disease (AD). We review evidence for a novel signaling mechanism based on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly activated process of plasticity selective to interconnecting subcortical nuclei, the isodendritic core, where cell loss starts at the pre-symptomatic stages of the disease. Each of these cell groups has the capacity to form T14, which can stimulate production of p-Tau and β-amyloid, suggestive of an upstream driver of neurodegeneration. Moreover, results in an animal AD model show that antagonism of T14 with a cyclated variant, NBP14, prevents formation of β-amyloid, and restores cognitive function to that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel signaling system could bring much-needed fresh insights into the progression of cell loss underlying AD. HIGHLIGHTS: The possible primary mechanism of neurodegeneration upstream of amyloid. Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core. Bioactive peptide T14 trophic in development but toxic in context of mature brain. Potential for early-stage biomarker to detect Alzheimer's disease. Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.
Collapse
Affiliation(s)
| | - María‐Salud García‐Ayllón
- Unidad de InvestigaciónHospital General Universitario de Elche, FISABIOElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d'AlacantSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Neus Falgàs
- Alzheimer's disease and other cognitive disorders UnitHospital Clínic de Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Sharon A. Brangman
- Department of GeriatricsUpstate Center of Excellence for Alzheimer's DiseaseSUNY Upstate Medical University 750 East Adams StreetSyracuseNew YorkUSA
| | - Margaret M Esiri
- Neuropathology DepartmentJohn Radcliffe Hospital, West WingOxford UniversityOxfordUK
| | - Clive W. Coen
- Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | |
Collapse
|
4
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
5
|
Ranglani S, Hasan S, Mahfooz K, Gordon J, Garcia-Rates S, Greenfield S. Antagonism of a key peptide 'T14' driving neurodegeneration: Evaluation of a next generation therapeutic. Biomed Pharmacother 2023; 167:115498. [PMID: 37713989 DOI: 10.1016/j.biopha.2023.115498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
T14, a 14mer peptide derived from the C-terminus of acetylcholinesterase (AChE) is a signalling molecule that could drive neurodegeneration via the alpha 7 nicotinic acetylcholine receptor. Its levels increase as Alzheimer's pathology progresses; however, a cyclic variant of the compound, NBP14, can block the effects of the endogenous linear counterpart in-vitro, ex vivo, and in vivo. Here, we explore the antagonistic potential of two 6mer peptides, NBP6A and NBP6B. These are smaller linear versions of NBP14, designed to be more effective by modifying the amino acid residues to enhance receptor blockade alongside other relevant solubility parameters. The peptides were tested in-vitro in PC12 cells on three parameters, calcium influx, cell viability, and AChE release, and ex vivo using voltage sensitive dye imaging (VSDI) in rat brain slices. Neither NBP6A nor NBP6B applied alone had any effect. In PC12 cells, NBP6B was identified as the more potent molecule since it demonstrated more effective blockade of T14 action on calcium influx, cell viability, and AChE release. NBP6B was then further evaluated using VSDI, where it proved twice as potent as NBP14 in blocking the action of T14. The improved effect of NBP6B in blocking the actions of T14, combined with its smaller size suggests that this variant could have even greater therapeutic potential than its original cyclic compound, for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Neuro-Bio Ltd., Building F5, Culham Science Centre, OX14 3DB Abingdon, United Kingdom.
| | - Sibah Hasan
- Neuro-Bio Ltd., Building F5, Culham Science Centre, OX14 3DB Abingdon, United Kingdom.
| | - Kashif Mahfooz
- Neuro-Bio Ltd., Building F5, Culham Science Centre, OX14 3DB Abingdon, United Kingdom
| | - Jack Gordon
- Neuro-Bio Ltd., Building F5, Culham Science Centre, OX14 3DB Abingdon, United Kingdom
| | - Sara Garcia-Rates
- Neuro-Bio Ltd., Building F5, Culham Science Centre, OX14 3DB Abingdon, United Kingdom
| | - Susan Greenfield
- Neuro-Bio Ltd., Building F5, Culham Science Centre, OX14 3DB Abingdon, United Kingdom
| |
Collapse
|
6
|
Ranglani S, Ashton A, Mahfooz K, Komorowska J, Graur A, Kabbani N, Garcia-Rates S, Greenfield S. A Novel Bioactive Peptide, T14, Selectively Activates mTORC1 Signalling: Therapeutic Implications for Neurodegeneration and Other Rapamycin-Sensitive Applications. Int J Mol Sci 2023; 24:9961. [PMID: 37373106 PMCID: PMC10298579 DOI: 10.3390/ijms24129961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an increase in mTORC1 in PC12 cells, and ex vivo rat brain slices containing substantia nigra, but not mTORC2. The increase in mTORC1 by T30 in PC12 cells is attenuated by its blocker, NBP14. Moreover, in post-mortem human midbrain, T14 levels correlate significantly with mTORC1. Silencing mTORC1 reverses the effects of T30 on PC12 cells measured via AChE release in undifferentiated PC12 cells, whilst silencing mTORC2 does not. This suggests that T14 acts selectively via mTORC1. T14 blockade offers a preferable alternative to currently available blockers of mTOR as it would enable selective blockade of mTORC1, thereby reducing side effects associated with generalised mTOR blockade.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Anna Ashton
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Kashif Mahfooz
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Joanna Komorowska
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Alexandru Graur
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (A.G.); (N.K.)
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (A.G.); (N.K.)
| | - Sara Garcia-Rates
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Susan Greenfield
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| |
Collapse
|
7
|
Hasan S, Ahmed M, Garcia-Ratés S, Greenfield S. Antagonising a novel toxin "T14" in Alzheimer's disease: Comparison of receptor blocker versus antibody effects in vitro. Biomed Pharmacother 2023; 158:114120. [PMID: 36521245 DOI: 10.1016/j.biopha.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
A 14mer peptide, T14, is a possible signaling molecule driving neurodegeneration. Its levels are doubled in the Alzheimer brain, but its effects can be blocked at the target alpha-7 receptor by a cyclised variant, 'NBP14', which has beneficial effects, in a transgenic mouse model, on the behavioral and histochemical profile. Since the antagonism of T14 has evident therapeutic potential, we explore here an alternative method of preventing its action by comparing the efficacy of NBP14 with a proprietorial polyclonal antibody against T14, 'Ab-19', at inhibiting three distinct effects of the peptide in PC12 cells: calcium influx, cell viability and compensatory acetylcholinesterase (AChE) release. None of these three parameters was affected by either blocking agent when applied alone. However, both NBP14 and the Ab-19 exhibited a dose-dependent profile against the actions of T14 in all three scenarios: the least sensitive effect observed was in the lower dose range, for both the antibody and the receptor blocker, in antagonizing T14-triggered release of AChE: this parameter is interpreted as indirect compensation for the T14-induced compromise of cell viability, triggered by the enhanced influx of calcium through the initial binding of the peptide to an allosteric site on the alpha-7 receptor. As such, it is the most delayed and indirect index of T14 action and thus the least relatively impacted by lowest doses of either NBP14 or Ab-19. In all three scenarios however the effects of T14 are successfully offset by either agent and thus offer two potentially very different therapies against Alzheimer's disease.
Collapse
Affiliation(s)
- Sibah Hasan
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Abingdon OX14 3DB, UK.
| | - Mehreen Ahmed
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Sara Garcia-Ratés
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Susan Greenfield
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| |
Collapse
|